7
7

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Processingで二重振り子(Double Pendulum)の軌跡を描く

Posted at
スクリーンショット 2016-03-16 17.33.40.png スクリーンショット 2016-03-16 17.33.56.png 二重振り子はカオスな運動をすることで知られている。その軌跡をProcessingで書くと美しい。

単振り子の作り方

The Nature of Code「3.9 Trigonometry and Forces: The Pendulum」を読もう。
http://natureofcode.com/book/chapter-3-oscillation/

二重振り子の加速度

\theta_1'' = \frac{-g(2m_1 + m_2){\sin \theta_1} - m_2g{\sin (\theta_1 - 2\theta_2) -2{\sin (\theta_1 - \theta_2)}}m_2(\theta_2'^2L_2+\theta_1'^2L_1{\cos(\theta_1 - \theta_2))}}{L_1(2m_1+m_2-m_2{\cos(2\theta_1 - 2\theta_2))}}
\theta_2'' = \frac{2{\sin (\theta_1 - \theta_2)(\theta_1'^2L_1(m_1+m_2)+g(m_1+m_2){\cos \theta_1}}+\theta_2'^2L_2m_2{\cos(\theta_1 - \theta_2))}}{L_2(2m_1+m_2-m_2{\cos(2\theta_1 - 2\theta_2))}}

二重振り子の加速度は上のようなエグい数式で表される。

親の振り子

内側の振り子を親とする。
###角速度
角度の一回微分が角速度になることに注意する。

float alpha = -gravity * (2 * mass1 + mass2) * sin(angle)-mass2 * gravity * sin(angle - 2 * childAngle) - 2 * sin(angle - childAngle) * mass2 *(childAngleVelocity * childAngleVelocity * l2 + angleVelocity * angleVelocity * l1 * cos(angle - childAngle));

float beta = l1 * (2 * mass1 + mass2 - mass2 * cos(2 * angle - 2 * childAngle));

angleAcceleration = alpha / beta;

###角度を求める

angleVelocity += angleAcceleration;
angle += angleVelocity;

子の振り子

外側の振り子を子とする。
###角速度

float gunnma = 2 * sin(angle - childAngle) * (angleVelocity * angleVelocity * l1 *(mass1 + mass2) + gravity * (mass1 + mass2) * cos(angle) + childAngleVelocity * childAngleVelocity * l2 * mass2 * cos(angle - childAngle));

float phai = l2 * (2 * mass1 + mass2 - mass2 * cos(2 * angle - 2 * childAngle));


childAngleAcceleration = gunnma / phai;

###角度を求める

childAngleVelocity += childAngleAcceleration;
childAngle += childAngleVelocity;

描画

void display() {
 // 親の振り子
  location.set(l1 * sin(angle), l1 * cos(angle), 0);

  location.add(origin);

  translate(0, height / 3);
  float c = map(location.x,0, width, 0, 255);
  stroke(96, 230,c);
  fill(255);


  line(origin.x, origin.y, location.x, location.y);
  ellipse(location.x, location.y, mass1 * 3, mass1 * 3);

  // 子の振り子
  childLocation = location.get();
  childLocation.add(l2 * sin(childAngle), l2 * cos(childAngle));

  line(location.x, location.y, childLocation.x, childLocation.y);
  ellipse(childLocation.x, childLocation.y, mass2 * 3, mass2 * 3);
  // ellipse(childLocation.x, childLocation.y, 1, 1);
}
7
7
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
7
7

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?