エンジニアとしての市場価値を測りませんか?PR

企業からあなたに合ったオリジナルのスカウトを受け取って、市場価値を測りましょう

0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

PythonでFXチャートを表示してみる Csv2WebAPI編

Last updated at Posted at 2022-02-13

PythonでFXチャートを表示するのをGoogle Colabでやってみます。
https://colab.research.google.com

PythonでFXチャートを表示してみる API編
https://qiita.com/namikitakeo/items/c05cb9af05ac53c18dbf

Twelve DataのWebAPI実行回数には制限があります。過去データについては、アキシオリーのヒストリカルデータをWebAPI化して使おうと思います。

wget https://www.axiory.com/jp/assets/download/historical/mt4_standard/2022/USDJPY.zip

Twelve DataのWebAPIのURLに自作WebAPIを設定します。

import datetime
import pandas as pd
import mplfinance as mpf
from twelvedata import TDClient
from twelvedata.http_client import DefaultHttpClient

TWELVE_DATA_API_KEY = '****************************' # Twelve Data のAPIキー

#API_URL = 'https://api.twelvedata.com'
API_URL = 'https://***.mydns.jp' # Csv2WebAPIのURL

# ヒストリカルデータを取得
def get_historical_data(symbol, interval, outputsize, start_date, end_date, timezone):
#    td = TDClient(apikey = TWELVE_DATA_API_KEY)
    td = TDClient(apikey = TWELVE_DATA_API_KEY, http_client=DefaultHttpClient(API_URL))

    res = td.time_series(
              symbol = symbol,
              interval = interval,
              outputsize = outputsize,
              start_date = start_date,
              end_date = end_date,
              timezone = timezone
          ).as_json()

    df = pd.DataFrame(res).iloc[::-1].set_index('datetime').astype(float)
    df = df[df.index >= start_date]
    df.index = pd.to_datetime(df.index)

    return df

Apache2のProxy設定で、自作WebAPIをインターネットに公開します。
https://qiita.com/namikitakeo/items/02a1af116781622dff31

Csv2WebAPI.py
import json
from flask import *

app = Flask(__name__)

@app.route("/time_series")
def response_json():
   req = request.args
   symbol = req.get("symbol")
   interval = req.get("interval")
   outputsize = req.get("outputsize")
   start_date = req.get("start_date")
   s = r'{"meta":{"symbol":"'+symbol+'","interval":"'+interval+'","type":"Physical Currency"},"values":['
   filename = symbol[0:3]+symbol[4:7]+'_'+start_date[0:4]+'_'+start_date[5:7]+'.csv'
   start=start_date[0:10]
   output = 0
   max = int(outputsize)
   if interval=="1h":
       max *= 60
   if interval=="1day":
       max *= 60 * 24
   first=""
   last=""
   high=""
   low=""
   with open(filename, 'r') as f:
      for row in f:
         datetime=row.replace('.','-')
         hour=datetime[11:13]
         min=datetime[14:16]
         if datetime[0:10] < start:
            continue
         if output<max:
            s1=row.split(',')
            if interval=="1day":
               if (datetime[0:10]!=last):
                  last=datetime[0:10]
                  if (first == "1"):
                     s+='"high":"'+high+'",'
                     s+='"low":"'+low+'",'
                     s+='"close":"'+(s2[5])+'"},'
                     first = ""
                  s+='{"datetime":"'+datetime[0:10]+' '+datetime[11:16]+':00",'
                  s+='"open":"'+(s1[2])+'",'
                  high=(s1[3])
                  low=(s1[4])
                  first = "1"
            elif interval=="1h":
               if (hour!=last): 
                  last=hour
                  if (first == "1"):
                     s+='"high":"'+high+'",'
                     s+='"low":"'+low+'",'
                     s+='"close":"'+(s2[5])+'"},'
                     first = ""
                  s+='{"datetime":"'+datetime[0:10]+' '+datetime[11:16]+':00",'
                  s+='"open":"'+(s1[2])+'",'
                  high=(s1[3])
                  low=(s1[4])
                  first = "1"
            else:
               s+='{"datetime":"'+datetime[0:10]+' '+datetime[11:16]+':00",'
               s+='"open":"'+(s1[2])+'",'
               s+='"high":"'+(s1[3])+'",'
               s+='"low":"'+(s1[4])+'",'
               s+='"close":"'+(s1[5])+'"},'
            s2=s1
            if high<(s1[3]):
               high=(s1[3])
            if low>(s1[4]):
               low=(s1[4])
         output += 1
   if (interval=="1day" or interval=="1h"):
      s+='"high":"'+high+'",'
      s+='"low":"'+low+'",'
      s+='"close":"'+(s2[5])+'"},'
   s+='],"status":"ok"}'
   s3=s.replace(',]',']')
   data = json.loads(s3)
   data['values'] = sorted(data['values'], key=lambda k: k['datetime'], reverse=True)
   return (data)

if __name__ == '__main__':
   app.run()
0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?