2
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

ClaraでCOVID-19病変箇所をセグメンテーションする方法

Last updated at Posted at 2021-04-05

記事の概要

  • Clara Train SDKと呼ばれるアノテーション支援ツールがある
  • 胸部CTの病変箇所のセグメンテーションもできるけど,どうもファイルに欠損があるっぽい
  • 設定ファイルを追加し,AIAAサーバーに登録することで解決できたので共有

検証環境

docker pull nvcr.io/nvidia/clara-train-sdk:v3.1.01

cf. https://ngc.nvidia.com/catalog/containers/nvidia:clara-train-sdk

学習済みモデルのダウンロード

ngc registry model download-version "nvidia/clara_train_covid19_ct_lesion_seg:1"

cf. https://ngc.nvidia.com/catalog/models/nvidia:clara_train_covid19_ct_lesion_seg

設定ファイルの追加

AIAAサーバーで動かすための設定ファイルconfig_aiaa.jsonがないので,下記のファイルを作成する.

  • clara_train_covid19_ct_lesion_seg_v1/config/config_aiaa.json
{
  "version": "3",
  "type": "segmentation",
  "labels": [
    "label_class0",
    "label_class1"
  ],
  "description": "The model described in this card is used to segment the COVID-19 affected region from the 3D chest CT images",
  "pre_transforms": [
    {
      "name": "LoadNifti",
      "args": {
        "fields": "image",
        "as_closest_canonical": true
      }
    },
    {
      "name": "ConvertToChannelsFirst",
      "args": {
        "fields": "image"
      }
    },
    {
      "name": "ScaleByResolution",
      "args": {
        "fields": "image",
        "target_resolution": [0.8, 0.8, 5.0]
      }
    },
    {
      "name": "ScaleIntensityRange",
      "args": {
        "fields": "image",
        "a_min": -1500,
        "a_max": 500,
        "b_min": 0.0,
        "b_max": 1.0,
        "clip": true
      }
    }
  ],
  "inference": {
    "image": "image",
    "name": "TRTISInference",
    "args": {
      "batch_size": 1,
      "roi": [
        384,
        384,
        32
      ],
      "scanning_window": true
    },
    "trtis": {
      "platform": "tensorflow_graphdef",
      "max_batch_size": 1,
      "input": [
        {
          "name": "NV_MODEL_INPUT",
          "data_type": "TYPE_FP32",
          "dims": [
            1,
            384,
            384,
            32
          ]
        }
      ],
      "output": [
        {
          "name": "NV_MODEL_OUTPUT",
          "data_type": "TYPE_FP32",
          "dims": [
            2,
            384,
            384,
            32
          ]
        }
      ],
      "instance_group": [
        {
          "count": 1,
          "kind": "KIND_AUTO"
        }
      ]
    },
    "tf": {
      "input_nodes": {
        "image": "NV_MODEL_INPUT"
      },
      "output_nodes": {
        "model": "NV_MODEL_OUTPUT"
      }
    }
  },
  "post_transforms": [
    {
      "name": "ArgmaxAcrossChannels",
      "args": {
        "fields": "model"
      }
    },
    {
      "name": "FetchExtremePoints",
      "args": {
        "image_field": "image",
        "label_field": "model",
        "points": "points"
      }
    },
    {
      "name": "CopyProperties",
      "args": {
        "fields": [
          "model"
        ],
        "from_field": "image",
        "properties": [
          "affine",
          "original_affine",
          "as_canonical"
        ]
      }
    },
    {
      "name": "RestoreOriginalShape",
      "args": {
        "field": "model",
        "src_field": "image",
        "is_label": true
      }
    }
  ],
  "writer": {
    "name": "WriteNifti",
    "args": {
      "field": "model",
      "dtype": "uint8",
      "revert_canonical": true
    }
  }
}

AIAAサーバーへ登録

$LOCAL_PORT=80
curl -X PUT "http://127.0.0.1:$LOCAL_PORT/admin/model/clara_train_covid19_ct_lesion_seg" \
     -F "config=@clara_train_covid19_ct_lesion_seg_v1/config/config_aiaa.json;type=application/json" \
     -F "data=@clara_train_covid19_ct_lesion_seg_v1/models/model.trt.pb"

cf. https://docs.nvidia.com/clara/tlt-mi/aiaa/server_apis.html

これで,3D Slicerで検証できるようになります.

2
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?