Help us understand the problem. What is going on with this article?

Monodepth2を動かすメモ(仮)

概要

  1. CUDA10.0のDocker imageで環境構築
  2. PyTorchのインストール
  3. Monodepth2を動かす

結論

  • すぐ動かせるので簡単に試せる!すごい!!

てst

  • 「Digging Into Self-Supervised Monocular Depth Estimation」のソースコードがGitHubで公開されている
  • testのサンプルを動かすところまで

環境構築

  • Anacondaは使わない
docker pull nvidia/cuda:10.0-cudnn7-devel-ubuntu16.04
docker run --runtime=nvidia -it --rm -e DISPLAY=$DISPLAY -v /tmp/.X11-unix/:/tmp/.X11-unix -e QT_X11_NO_MITSHM=1 -v /data:/data -w=/data nvidia/cuda:10.0-cudnn7-devel-ubuntu18.04
cd /data && git clone https://github.com/nianticlabs/monodepth2.git

関連インストール

  • 流用しているので不要なライブラリも含む
apt update
apt-get install -yq --no-install-recommends --no-upgrade software-properties-common curl  python3-dev python3-tk  locales  libatlas-base-dev libprotobuf-dev libleveldb-dev  libsnappy-dev libhdf5-serial-dev protobuf-compiler libboost-all-dev libgflags-dev libgoogle-glog-dev liblmdb-dev opencl-headers ocl-icd-opencl-dev libviennacl-dev libopenexr-dev libsm6 libxext6 libxrender-dev
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python3 get-pip.py --force-reinstall
pip install --no-cache-dir Cython numpy protobuf openexr torch torchvision tensorboardX matplotlib opencv-python

実行

cd /data/monodepth2/
python3 test_simple.py --image_path assets/test_image.jpg --model_name mono+stereo_640x192

まとめ

  • 親切な設計とREADMEはありがたい…
Why do not you register as a user and use Qiita more conveniently?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
Comments
Sign up for free and join this conversation.
If you already have a Qiita account
Why do not you register as a user and use Qiita more conveniently?
You need to log in to use this function. Qiita can be used more conveniently after logging in.
You seem to be reading articles frequently this month. Qiita can be used more conveniently after logging in.
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away