55
23

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

pytorchのtorch.cuda.is_available()がFalseを出す問題

Last updated at Posted at 2019-12-03

環境

・ubuntu 16.04
・python 3.8.3
・pytorch 1.7.0

pytorchでGPUが使えない

Deeplearningをしようと思ったが,遅いのでipythonでcudaが見えているか確認.

In [1]: import torch

In [2]: torch.cuda.is_available()
Out[2]: False

なぜ?

考えうる原因として,NVIDIA-driverが動作していないことを考えたが,

(base) user@user:~$ nvidia-smi
Tue Dec  3 11:29:10 2019       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 390.116                Driver Version: 390.116                   |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  TITAN X (Pascal)    Off  | 00000000:01:00.0  On |                  N/A |
| 23%   34C    P8    13W / 250W |    461MiB / 12192MiB |      1%      Default |
+-------------------------------+----------------------+----------------------+
|   1  TITAN X (Pascal)    Off  | 00000000:02:00.0 Off |                  N/A |
| 23%   32C    P8     9W / 250W |      2MiB / 12196MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      1313      G   /usr/lib/xorg/Xorg                            24MiB |
|    0      1357      G   /usr/bin/gnome-shell                          50MiB |
|    0      2168      G   /usr/lib/xorg/Xorg                           213MiB |
|    0      2305      G   /usr/bin/gnome-shell                         128MiB |
|    0      2735      G   ...quest-channel-token=6733556068912485413    40MiB |
+-----------------------------------------------------------------------------+

動いている.

どうやら,原因は他にあるらしい.

色々調査を続けるとNvidia-driverが古いから動かないとの情報を発見.
実際にipythonで以下のように打つと,

In [1]: import torch

In [2]: torch.cuda.current_device()
---------------------------------------------------------------------------
AssertionError                            Traceback (most recent call last)
<ipython-input-2-3380d2c12118> in <module>()
----> 1 torch.cuda.current_device()

~/.local/lib/python3.7/site-packages/torch/cuda/__init__.py in current_device()
    365 def current_device():
    366     r"""Returns the index of a currently selected device."""
--> 367     _lazy_init()
    368     return torch._C._cuda_getDevice()
    369 

~/.local/lib/python3.7/site-packages/torch/cuda/__init__.py in _lazy_init()
    176         raise RuntimeError(
    177             "Cannot re-initialize CUDA in forked subprocess. " + msg)
--> 178     _check_driver()
    179     torch._C._cuda_init()
    180     _cudart = _load_cudart()

~/.local/lib/python3.7/site-packages/torch/cuda/__init__.py in _check_driver()
    106 Alternatively, go to: https://pytorch.org to install
    107 a PyTorch version that has been compiled with your version
--> 108 of the CUDA driver.""".format(str(torch._C._cuda_getDriverVersion())))
    109 
    110 

AssertionError: 
The NVIDIA driver on your system is too old (found version 9010).
Please update your GPU driver by downloading and installing a new
version from the URL: http://www.nvidia.com/Download/index.aspx
Alternatively, go to: https://pytorch.org to install
a PyTorch version that has been compiled with your version
of the CUDA driver.

というようなメッセージが出たので,Nvidia-driverを更新することで解決するはず.

NVIDIA-Driverの更新

参照にしたのは
CUDAをInstallする
Unable to install nvidia drivers

なお,VersionはCUDAとDriverの対応関係表から調べる必要がある.手元のCUDAのVersionによってはtorchが新しすぎる可能性もあるのでtorchの旧Versionから対応しているか確認する.

1. (必要なら)古いドライバーの削除

(base) user@user:~$ sudo apt-get --purge remove nvidia-*
(base) user@user:~$ sudo apt-get --purge remove cuda-*

2. Repositoryの登録

Ubuntuのドライバーを提供している[リポジトリ]
(https://launchpad.net/~graphics-drivers/+archive/ubuntu/ppa)を登録.

(base) user@user:~$ sudo add-apt-repository ppa:graphics-drivers/ppa
(base) user@user:~$ sudo apt-get update

3. ドライバのインストール

(base) user@user:~$ sudo apt install nvidia-driver-410

以下のような,エラーが出た場合.

E: Unable to locate package nvidia-381

このようなコマンドで解決.

(base) user@user:~$ sudo apt-get -o Dpkg::Options::="--force-overwrite" install --fix-broken

4. 再起動

(base) user@user:~$ sudo reboot

5. 確認

(base) user@user:~$ nvidia-smi
Tue Dec  3 14:01:41 2019       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 410.104      Driver Version: 410.104      CUDA Version: 10.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  TITAN X (Pascal)    Off  | 00000000:01:00.0  On |                  N/A |
| 23%   37C    P8    10W / 250W |    479MiB / 12192MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   1  TITAN X (Pascal)    Off  | 00000000:02:00.0 Off |                  N/A |
| 23%   34C    P8    10W / 250W |      2MiB / 12196MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      1294      G   /usr/lib/xorg/Xorg                            24MiB |
|    0      1332      G   /usr/bin/gnome-shell                          50MiB |
|    0      1583      G   /usr/lib/xorg/Xorg                           232MiB |
|    0      1716      G   /usr/bin/gnome-shell                          95MiB |
|    0      2918      G   ...uest-channel-token=17611144113784425579    72MiB |
+-----------------------------------------------------------------------------+

(base) user@user:~$ ipython
In [1]: import torch

In [2]: torch.cuda.is_available()
Out[2]: True
55
23
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
55
23

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?