3
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

[Python]sympyを使って多項式から任意の着目する変数の係数を求める方法

Last updated at Posted at 2022-04-26
import sympy as sp

sp.var('x1, x2, x3')		# 着目する変数
sp.var('c1, c2, c3, c4, c5')	# 係数
expr = c1*x1 + c2*x2 + c3*x3 + c4*x1*x2 + c5	# 式を定義

expr_poly = sp.poly(expr, x1, x2, x3)	# x1,x2,x3に着目した多項式オブジェクトを作成
x1_coef = expr_poly.nth(1, 0, 0)	# x1の係数
x2_coef = expr_poly.nth(0, 1, 0)	# x2の係数
x3_coef = expr_poly.nth(0, 0, 1)	# x3の係数
x1_x2_coef = expr_poly.nth(1, 1, 0)	# x1*x2の係数
constant = expr_poly.nth(0, 0, 0)	# 定数

print(x1_coef, x2_coef, x3_coef, x1_x2_coef, constant)
# 実行結果 -> c1 c2 c3 c4 c5

(補足)polyやnthの引数は可変長引数になっているので引数の展開を使うとリストのまま扱えて便利

variableList = [x1, x2, x3]
expr_poly = sp.poly(expr, *variableList)
x1_coef = expr_poly.nth(*[1, 0, 0])
x2_coef = expr_poly.nth(*[0, 1, 0])
x3_coef = expr_poly.nth(*[0, 0, 1])
x1_x2_coef = expr_poly.nth(*[1, 1, 0])
constant = expr_poly.nth(*[0, 0, 0])

参考資料

Sympy公式ドキュメント

3
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
3
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?