0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

OMC231B

Posted at

$S_1=0$
$S_2=1$
$S_3=01$
$S_4=101$
$S_5=01101$
$S_6=10101101$
$S_7=0110110101101$
$S_8=101011010110110101101$
$S_9=0110110101101101011010110110101101$
$S_{10}=1010110101101101011010110110101101101011010110110101101$
$S_{11}=01101101011011010110101101101011011010110101101101011010110110101101101011010110110101101$

長いし、何番目が1か把握しないととっかかりも掴めなさそう。

見た感じ0が連続する所はないので、11を2に置き換えてみる。
$S_{11}'=02020102020102010202010202010201020201020102020102020102010202010201$

さらに0を消す。
$S_{11}''=2212212122122121221212212212122121$

ある$0$の後ろに何個$1$があるかを知りたいので、 $S_{11}''$の先頭からの累積和を計算する。($T_{11}$と置く。)
$T_{11}=\lbrace2,4,5,7,9,10,12,13,15,17,18,20,22,23,25,26,28,30,31,33,34,36,38,39,41,43,44,46,47,49,51,52,54,55\rbrace$

$T_{11}$の$i$番目の要素を$T_{11}(i)$と置くと、解は
$\Sigma_iT_{11}(i)=979$。(不正解)

問題を読み違えていた。
$(i,j)=(0,1)$の組み合えせではなく、$(i,j)=(1,0)$の組み合わせなので、
$1$で終わっているので最後の$55$を足してはいけなかった。
$979-55=924$。

0
0
1

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?