0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

OMC232A(616)

Last updated at Posted at 2024-11-13

まず、$f^n(x)$を展開した式を考えます。

$f^3(x)=f(f(f(x)))$
$=f(f(135x-246))$
$=f(135×(135x-246)-246)$
$=f(135^2x-135×246-246)$
$=135×(135^2x-135×246-246)-246$
$=135^3x-135^2×246-135×246-246$
$=135^3x-246×\Sigma_{k=0}^{3-1}135^k$

おそらく、
$f^n(x)=135^nx-246×\Sigma_{k=0}^{n-1}135^k$
になると推測します。

$f^{10}(x)$と$f^{401}(x)$に当てはめます。

$f^{10}(x)=135^{10}x-246×\Sigma_{k=0}^{10-1}135^k$
$f^{401}(x)=135^{401}x-246×\Sigma_{k=0}^{401-1}135^k$

$f^{10}(x)=f^{401}(x)$なので、
$135^{10}x-246×\Sigma_{k=0}^{10-1}135^k=135^{401}x-246×\Sigma_{k=0}^{401-1}135^k$
$246×(\Sigma_{k=0}^{401-1}135^k-\Sigma_{k=0}^{10-1}135^k)=(135^{401}-135^{10})x$
$246×\Sigma_{k=10}^{400}135^k=(135^{401}-135^{10})x$

左右を入れ替えて、$135^{10}$で括ると、
$135^{10}×(135^{391}-1)x=246×135^{10}×\Sigma_{k=0}^{390}135^k$

また、$135^{391}-1$を変形して、
$=(135-1)(135^{390}+…+135^2+135^1+1)$
$=(135-1)\Sigma_{k=0}^{390}135^k$
とできるので、

$135^{10}×\lbrace(135-1)\Sigma_{k=0}^{390}135^k\rbrace x=246×135^{10}×\Sigma_{k=0}^{390}135^k$

両辺を$135^{10}\Sigma_{k=0}^{390}135^k$で割って、
$(135-1)x=246$
$x=\frac{246}{135-1}$
$=\frac{2×3×41}{2×67}$

約分して、
$x=\frac{123}{67}$

問題文では総和となっていますが、$x$が一意に定まるので、総和も
$\frac{123}{67}$となり、$a=123,b=67$となります。

したがって、解は、
$a+b=123+67=190$

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?