1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

OMC233A(273)

Last updated at Posted at 2024-11-10

左辺を変形すると、
$=((2^2)^{sinα})^{cosα}$
$=2^{2×sinα×cosα}$
$=2^{2sinαcosα}$
$=2^{sin2α}$。

右辺は、
$=2^{\frac{1}{2}}$。

指数部$sin2α=\frac{1}{2}$より、
$2α=2nπ+\frac{1}{6}π$ $…①$
$2α=2nπ+\frac{5}{6}π$ $…②$
$(n=0,1…)$

$①$、$②$の両辺を$2$で割ると、
$α=(n+\frac{1}{12})π$ $…①'$
$α=(n+\frac{5}{12})π$ $…②'$

$0<\frac{1}{12}<\frac{5}{12}<1$なので、昇順に並べると、
$(①',n=0),(②',n=0),(①',n=1),(②',n=1),(①',n=2),…$となります。
したがって$20$番目は、$②'$、かつ$n=9$となるので、
$α=(9+\frac{5}{12})π$。

$\frac{a}{b}π$の形にすると、
$(9+\frac{5}{12})π=\frac{9×12+5}{12}π$
$=\frac{113}{12}π$
となり、
$a+b=125$。

1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?