1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

sympyで「Singularity function(特異関数)」を使ってみた

Last updated at Posted at 2017-10-31

Doc

Singularity functions are a class of discontinuous functions.

wikipedia

日本語版はありませんでした。(2024/01/31)

参考

はり

(参考)sympyで不静定はりを解く

from sympy import *
var('RA,wi,RB')
var('F,M,L,w,x,S')
var('EI,ud,c,u,f,kekka')
w=-RA*SingularityFunction(x, 0, -1) + wi*SingularityFunction(x, L*2, 0)- RB*SingularityFunction(x, L*4, -1)
S=integrate(w, x)
M=-integrate(S, x)
ud=1/EI*(integrate(M, x)+c)
u=integrate(ud, x)
u=u.subs({RA:3, RB: 9,wi:6,L:1})
f=u.subs({x:4})
kekka=solve(f,c)
u=u.subs({c:kekka[0]})
print(u)
pprint(u)
# (-7*x + SingularityFunction(x, 0, 3)/2 - SingularityFunction(x, 2, 4)/4 + 3*SingularityFunction(x, 4, 3)/2)/EI
#           3          4            3
#        <x>    <x - 2>    3⋅<x - 4>
# -7⋅x + ──── - ──────── + ──────────
#         2        4           2
# ───────────────────────────────────
#                  EI

参考文献

【補足】(2018/02/18)
(参考)材料力学 (JSMEテキストシリーズ)

演習材料力学 (JSMEテキストシリーズ)

いつもの? sympyの実行環境と 参考のおすすめです。

(テンプレート)

1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?