4
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

Amazon Timestreamにいろいろなクエリーを投げてみた。

Posted at

GAリリースされたAmazon Timestreamにいろいろなクエリーを投げてみました。

サンプルデータ

Timestreamのデータベースを作成する際に、サンプルデータが入ったものを作成することができます。
今回はこちらを使ってクエリーを投げてみました。

fleet truck_id fuel_capacity model load_capacity make measure_value::double measure_value::varchar measure_name time
Alpha 7128555298 100 359 1000 Peterbilt 7.842702716127531 - fuel-reading 2020-10-09 14:11:54.267000000
Alpha 1641688615 100 359 1000 Peterbilt - 36.1627° N, 86.7816° W location 2020-10-09 14:11:52.086000000
Alpha 9355060257 100 Wrecker 500 Peterbilt 12.0 - speed 2020-10-09 14:11:48.210000000
Alpha 7219245711 100 Wrecker 500 Peterbilt 19.78241022554396 - fuel-reading 2020-10-09 14:11:44.294000000
Alpha 21135517 100 359 1000 Peterbilt 74.1987909949444 - fuel-reading 2020-10-09 14:11:27.965000000
Alpha 433496933 100 Wrecker 500 Peterbilt 112.0 - load 2020-10-09 14:11:27.788000000
Alpha 3496454495 150 W925 1000 Kenworth - 36.1627° N, 86.7816° W location 2020-10-09 14:11:27.742000000
Alpha 4354044937 100 359 1000 Peterbilt 69.50232420155284 - fuel-reading 2020-10-09 14:11:25.140000000
Alpha 5644432615 150 W925 1000 Kenworth 101.12753874492175 - fuel-reading 2020-10-09 14:11:24.987000000
Alpha 7602194211 100 359 1000 Peterbilt 138.0 - load 2020-10-09 14:11:18.528000000

timeに時刻、measure_name測定値の名前が入り、measure_value::doubleまたはmeasure_value::varcharに計測値が入ってます。
fleetやtruck_idなどは属性値で、Dimensionと呼ぶようです。

SQL

いわゆる通常のSQLが使えます。サブクエリも使えるとのことです。

SELECT * 
FROM "IoT-Sample"."IoT" 
WHERE truck_id = '4132246625' AND measure_name = 'speed'
ORDER BY time DESC
LIMIT 10
fleet truck_id fuel_capacity model load_capacity make measure_value::double measure_value::varchar measure_name time
Alpha 4132246625 100 359 1000 Peterbilt 67.0 - speed 2020-10-09 14:09:21.208000000
Alpha 4132246625 100 359 1000 Peterbilt 73.0 - speed 2020-10-09 12:24:41.422000000
Alpha 4132246625 100 359 1000 Peterbilt 16.0 - speed 2020-10-09 12:16:49.933000000
Alpha 4132246625 100 359 1000 Peterbilt 3.0 - speed 2020-10-09 12:00:57.192000000
Alpha 4132246625 100 359 1000 Peterbilt 35.0 - speed 2020-10-09 11:51:33.847000000
Alpha 4132246625 100 359 1000 Peterbilt 49.0 - speed 2020-10-09 11:48:21.102000000
Alpha 4132246625 100 359 1000 Peterbilt 50.0 - speed 2020-10-09 11:47:10.982000000
Alpha 4132246625 100 359 1000 Peterbilt 52.0 - speed 2020-10-09 11:01:30.840000000
Alpha 4132246625 100 359 1000 Peterbilt 54.0 - speed 2020-10-09 09:22:08.533000000
Alpha 4132246625 100 359 1000 Peterbilt 19.0 - speed 2020-10-09 09:03:11.096000000

Date / Time Functions

時系列データベースというので、時刻関係の関数が用意されており、bin(timestamp, X unit)関数はX unitに切り捨てしてくれます。
例えば30分ごとの平均を取得。

SELECT truck_id, avg(measure_value::double) as avg_speed, BIN(time, 30m) as binned_time
FROM "IoT-Sample"."IoT" 
WHERE truck_id = '4132246625' AND measure_name = 'speed'
GROUP BY truck_id, BIN(time, 30m)
ORDER BY binned_time DESC
LIMIT 10
truck_id avg_speed binned_time
4132246625 67.0 2020-10-09 14:00:00.000000000
4132246625 30.666666666666668 2020-10-09 12:00:00.000000000
4132246625 44.666666666666664 2020-10-09 11:30:00.000000000
4132246625 52.0 2020-10-09 11:00:00.000000000
4132246625 36.5 2020-10-09 09:00:00.000000000

Timeseries views

Timestreamでは、timeseriesというデータタイプが用意されいて、CREATE_TIME_SERIES関数を使うことで、timeseries型に変換できます。
timeseries型のデータは、時刻と計測値のペアがJSON形式で格納されます。

SELECT truck_id, CREATE_TIME_SERIES(time, measure_value::double) as speed
FROM "IoT-Sample"."IoT" 
WHERE measure_name = 'speed'
GROUP BY truck_id
ORDER BY truck_id
LIMIT 10
truck_id speed
1234546252 [
{ time: 2020-10-09 09:45:32.192000000, value: 65.0 },
{ time: 2020-10-09 11:16:40.034000000, value: 45.0 }...
View 8 more row(s)
]
1575739296 [
{ time: 2020-10-09 09:15:07.856000000, value: 56.0 },
{ time: 2020-10-09 10:29:40.381000000, value: 30.0 }...
View 8 more row(s)
]
1588092325 [
{ time: 2020-10-09 09:01:49.081000000, value: 19.0 },
{ time: 2020-10-09 09:22:57.346000000, value: 67.0 }...
View 8 more row(s)
]
1641688615 [
{ time: 2020-10-09 09:49:20.010000000, value: 37.0 },
{ time: 2020-10-09 10:14:42.971000000, value: 42.0 }...
View 8 more row(s)
]
1682738967 [
{ time: 2020-10-09 09:07:58.814000000, value: 75.0 },
{ time: 2020-10-09 09:28:31.453000000, value: 8.0 }...
View 8 more row(s)
]
1712492054 [
{ time: 2020-10-09 09:36:27.020000000, value: 44.0 },
{ time: 2020-10-09 09:49:04.039000000, value: 65.0 }...
View 8 more row(s)
]
1836816173 [
{ time: 2020-10-09 08:59:28.330000000, value: 29.0 },
{ time: 2020-10-09 09:21:43.510000000, value: 15.0 }...
View 8 more row(s)
]
199744055 [
{ time: 2020-10-09 09:16:35.398000000, value: 42.0 },
{ time: 2020-10-09 09:23:48.835000000, value: 46.0 }...
View 8 more row(s)
]
2062792987 [
{ time: 2020-10-09 09:30:31.074000000, value: 45.0 },
{ time: 2020-10-09 09:54:24.573000000, value: 50.0 }...
View 8 more row(s)
]
21135517 [
{ time: 2020-10-09 09:23:58.552000000, value: 64.0 },
{ time: 2020-10-09 10:43:06.367000000, value: 48.0 }...
View 8 more row(s)
]

View X more row(s)の部分はマネジメントコンソールでは省略して表示されており、クリックすると、詳細が表示されます。

image.png

time value
2020-10-09 09:45:32.192000000 65.0
2020-10-09 11:16:40.034000000 45.0
2020-10-09 11:28:41.938000000 47.0
2020-10-09 11:33:45.047000000 55.0
2020-10-09 12:19:13.367000000 75.0
2020-10-09 12:36:46.970000000 10.0
2020-10-09 13:30:40.722000000 44.0
2020-10-09 13:56:28.837000000 60.0
2020-10-09 14:01:50.177000000 15.0
2020-10-09 14:03:38.020000000 0.0

Time series functions

時系列データに対する関数も用意されています。例えば、INTERPOLATE_LINEAR関数は値を埋めてくれます。

Fills in missing data using linear interpolation.

下の例は、30分ごとのデータを線形補間で生成しています。sequence(start, stop, step)関数で生成する値の間隔を指定していますが、startとstopは実際の値の範囲内じゃないとだめっぽいです。

SELECT truck_id, 
  INTERPOLATE_LINEAR(
    CREATE_TIME_SERIES(time, measure_value::double),
    SEQUENCE(min(time), max(time), 30m)
  ) as speed
FROM "IoT-Sample"."IoT" 
WHERE measure_name = 'speed'
GROUP BY truck_id
ORDER BY truck_id
LIMIT 10
truck_id speed
1234546252 [
{ time: 2020-10-09 09:45:32.192000000, value: 65.0 },
{ time: 2020-10-09 10:15:32.192000000, value: 58.416049695656895 }...
View 7 more row(s)
]
1575739296 [
{ time: 2020-10-09 09:15:07.856000000, value: 56.0 },
{ time: 2020-10-09 09:45:07.856000000, value: 45.53611215141335 }...
View 8 more row(s)
]
1588092325 [
{ time: 2020-10-09 09:01:49.081000000, value: 19.0 },
{ time: 2020-10-09 09:31:49.081000000, value: 68.91556160771218 }...
View 7 more row(s)
]
1641688615 [
{ time: 2020-10-09 09:49:20.010000000, value: 37.0 },
{ time: 2020-10-09 10:19:20.010000000, value: 47.34174652449723 }...
View 7 more row(s)
]
1682738967 [
{ time: 2020-10-09 09:07:58.814000000, value: 75.0 },
{ time: 2020-10-09 09:37:58.814000000, value: 9.162118557623112 }...
View 7 more row(s)
]
1712492054 [
{ time: 2020-10-09 09:36:27.020000000, value: 44.0 },
{ time: 2020-10-09 10:06:27.020000000, value: 34.61657724615213 }...
View 6 more row(s)
]
1836816173 [
{ time: 2020-10-09 08:59:28.330000000, value: 29.0 },
{ time: 2020-10-09 09:29:28.330000000, value: 31.383254052802055 }...
View 8 more row(s)
]
199744055 [
{ time: 2020-10-09 09:16:35.398000000, value: 42.0 },
{ time: 2020-10-09 09:46:35.398000000, value: 13.60871678326465 }...
View 6 more row(s)
]
2062792987 [
{ time: 2020-10-09 09:30:31.074000000, value: 45.0 },
{ time: 2020-10-09 10:00:31.074000000, value: 52.07211022782296 }...
View 7 more row(s)
]
21135517 [
{ time: 2020-10-09 09:23:58.552000000, value: 64.0 },
{ time: 2020-10-09 09:53:58.552000000, value: 57.93405176907693 }...
View 8 more row(s)
]

データが30分おきになっています。

time value
2020-10-09 09:45:32.192000000 65.0
2020-10-09 10:15:32.192000000 58.416049695656895
2020-10-09 10:45:32.192000000 51.83209939131379
2020-10-09 11:15:32.192000000 45.248149086970685
2020-10-09 11:45:32.192000000 60.18373944405349
2020-10-09 12:15:32.192000000 73.37867258972554
2020-10-09 12:45:32.192000000 15.522237945272241
2020-10-09 13:15:32.192000000 34.44762245218557
2020-10-09 13:45:32.192000000 53.213475743081105

min(time)からの30分間隔は少し気持ちが悪いので、00分、30分ごとにするにはこんな感じでしょうか

SELECT truck_id, 
  INTERPOLATE_LINEAR(
    CREATE_TIME_SERIES(time, measure_value::double),
    SEQUENCE(bin(min(time)+ 1h ,1h), max(time), 30m)
  ) as speed
FROM "IoT-Sample"."IoT" 
WHERE measure_name = 'speed'
GROUP BY truck_id
ORDER BY truck_id
LIMIT 10
truck_id speed
1234546252 [
{ time: 2020-10-09 10:00:00.000000000, value: 61.82577514127146 },
{ time: 2020-10-09 10:30:00.000000000, value: 55.24182483692835 }...
View 7 more row(s)
]
1575739296 [
{ time: 2020-10-09 10:00:00.000000000, value: 40.34983728430808 },
{ time: 2020-10-09 10:30:00.000000000, value: 29.77482942057512 }...
View 6 more row(s)
]
1588092325 [
{ time: 2020-10-09 10:00:00.000000000, value: 46.790964648508535 },
{ time: 2020-10-09 10:30:00.000000000, value: 63.37907403508092 }...
View 5 more row(s)
]
1641688615 [
{ time: 2020-10-09 10:00:00.000000000, value: 39.1011371926136 },
{ time: 2020-10-09 10:30:00.000000000, value: 59.68175770780711 }...
View 6 more row(s)
]
1682738967 [
{ time: 2020-10-09 10:00:00.000000000, value: 16.966425157908184 },
{ time: 2020-10-09 10:30:00.000000000, value: 70.67966775160798 }...
View 6 more row(s)
]
1712492054 [
{ time: 2020-10-09 10:00:00.000000000, value: 45.89098423361806 },
{ time: 2020-10-09 10:30:00.000000000, value: 12.212910765588772 }...
View 5 more row(s)
]
1836816173 [
{ time: 2020-10-09 09:00:00.000000000, value: 28.667924923980287 },
{ time: 2020-10-09 09:30:00.000000000, value: 32.49950906732863 }...
View 8 more row(s)
]
199744055 [
{ time: 2020-10-09 10:00:00.000000000, value: 45.46459879696737 },
{ time: 2020-10-09 10:30:00.000000000, value: 3.39022689038606 }...
View 4 more row(s)
]
2062792987 [
{ time: 2020-10-09 10:00:00.000000000, value: 50.54843613050327 },
{ time: 2020-10-09 10:30:00.000000000, value: 21.4323793899003 }...
View 6 more row(s)
]
21135517 [
{ time: 2020-10-09 10:00:00.000000000, value: 56.71598240453767 },
{ time: 2020-10-09 10:30:00.000000000, value: 50.6500341736146 }...
View 6 more row(s)
]
4
3
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
4
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?