97
85

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Jupyter notebook(Python) の小技3つ

Last updated at Posted at 2016-07-10

はじめに

最近良くJupyter notebook(Python3)のお世話になっていて、
いくつか小技が増えたので投稿します。

環境

  • Jupyter Notebook 4.2.x
  • Python 3.5.x

※ 例えば、https://github.com/mokemokechicken/jupyter-tensorflow のDocker上のJupyter環境で使えます。

小技たち

sklearnの決定木の結果を図に変換してinlineで表示する

sklearn.tree.tree.DecisionTreeClassifier などの決定木のは .dot形式出力はできるものの、それを notebook上に表示しようとすると結構厄介です。
しかし、一定の準備と手続きをすればその辺を簡単にできるようになります。

必要なもの

  • OS上にgraphvizをインストールしておいて dot に環境変数PATHが通っている状態

方法

こんな関数を定義します。

decision_tree_util.py
import os
from tempfile import mkstemp
import subprocess

from sklearn.tree.export import export_graphviz


def convert_decision_tree_to_ipython_image(clf, feature_names=None, class_names=None,
                                           image_filename=None, tmp_dir=None):
    dot_filename = mkstemp(suffix='.dot', dir=tmp_dir)[1]
    with open(dot_filename, "w") as out_file:
        export_graphviz(clf, out_file=out_file,
                        feature_names=feature_names,
                        class_names=class_names,
                        filled=True, rounded=True,
                        special_characters=True)

    from IPython.display import Image

    image_filename = image_filename or ('%s.png' % dot_filename)

    subprocess.call(('dot -Tpng -o %s %s' % (image_filename, dot_filename)).split(' '))
    image = Image(filename=image_filename)
    os.remove(dot_filename)
    return image

こんな感じで使えます。

notebook
from sklearn import datasets
from sklearn.tree.tree import DecisionTreeClassifier
%matplotlib inline

iris = datasets.load_iris()
X = iris.data
Y = iris.target

clf = DecisionTreeClassifier(max_depth=3)
clf.fit(X, Y)
convert_decision_tree_to_ipython_image(clf, image_filename='tree.png')

実行時にimport したファイルの再読み込みをする

別の場所からimportしているファイルを変更したので再読み込みしたいときがあると思います。
以下のように書いておくと、 notebook を実行するたびに再読み込みするようになります。
これを知る前は毎回kernelのリスタートしてました (^^;

%reload_ext autoreload
%autoreload 2

プログラム中からグラフやpandas.DataFrameなどを notebook上に複数個出力する

DataFrame などを出力したい

from IPython.core.display import display

を importしておいて、

display(data_frame)

とすればいつものように表示されます。文字列などを渡せば普通に文字列が出力されます。

グラフを出力したい

こう書いてしまうと、

notebook
from IPython.core.display import display
from numpy.random.mtrand import normal
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

display('graph1')
sns.distplot(normal(0, 1, size=1000))
sns.distplot(normal(0.1, 2, size=1000))

display('graph2')
sns.distplot(normal(-2, 2, size=1000))
sns.distplot(normal(2, 4, size=1000))

グラフが一つに固まるし、一番下にグラフが来てしまいます。


そういうときは plt.show() を適切なタイミングで呼ぶと良いです。

notebook
from IPython.core.display import display
from numpy.random.mtrand import normal
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

display('graph1')
sns.distplot(normal(0, 1, size=1000))
sns.distplot(normal(0.1, 2, size=1000))
plt.show()

display('graph1')
sns.distplot(normal(-2, 2, size=1000))
sns.distplot(normal(2, 4, size=1000))
plt.show()

これは notebook上の scriptだけでなく、 普通のソースコードから notebookに出力をしたいときにも使えます。

さいごに

小技でした。

97
85
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
97
85

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?