1
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

LeetCode / Balanced Binary Tree

Posted at

ブログ記事からの転載)

[https://leetcode.com/problems/balanced-binary-tree/]

Given a binary tree, determine if it is height-balanced.

For this problem, a height-balanced binary tree is defined as:

a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

Example 1:
Given the following tree [3,9,20,null,null,15,7]:
スクリーンショット 2019-08-02 15.03.05.png
Return true.

Example 2:

Given the following tree [1,2,2,3,3,null,null,4,4]:
スクリーンショット 2019-08-04 20.37.51.png
Return false.

どのsubtree間の深さの違いが1以下であるtreeを、balanced binary treeと言っています。
treeがbalanced binary treeになっているか判定せよという問題です。

解答・解説

解法1

subtreeの深さの違いからbalancedな状態か判定する問題なので、subtreeの深さを取得しながら、左右のsubtreeの深さの違いが1以下であるか判定する、再帰的な処理を書くこととします。
以下ではcheck関数を定義し、(subtreeの深さ, 左右のsubtree間の深さの差が1以下であるかのboolean)をtupleで返す構造とし、rootがない末端では(0, True)を返すこととして、再帰的な処理をかけます。
isBalanced関数の返り値としては、tupleの2つ目の要素を返すことになります。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

def check(root):
    if not root:
        return (0, True)
    l_depth, l_balanced = check(root.left)
    r_depth, r_balanced = check(root.right)
    return max(l_depth, r_depth) + 1, l_balanced and r_balanced and abs(l_depth - r_depth) <= 1

class Solution:
    def isBalanced(self, root):
        return check(root)[1]

iterativeなコードはちょっと長くなるので、recursiveが良いと思います。
考え方は同じですが、違う書き方をすると例えば以下の通り。

def check(root):
    if not root: return 0
    l_depth = check(root.left)
    r_depth = check(root.right)
    if l_depth == -1 or r_depth == -1 or abs(l_depth - r_depth) > 1: return -1
    return max(l_depth, r_depth) + 1

class Solution:
    def isBalanced(self, root):
        return check(root) != -1
1
3
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?