6
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

ブラウザでの画像オブジェクトの検出

Last updated at Posted at 2020-04-24

##はじめに

こんにちは streampack チームのメディです。
https://cloudpack.jp/service/option/streampack.html

###Copyrights of photos ・ 写真の著作権
https://www.pexels.com/photo/woman-sitting-on-top-of-volkswagen-2845631/
https://www.pexels.com/photo/photography-of-three-dogs-looking-up-850602/
https://www.pexels.com/photo/woman-in-blue-denim-jacket-holding-brushing-her-siberian-husky-4148879/

###What is tensorflowjs.js ・ tensorflowjsとは
tensorflow.js is a machine learning library that can be used directly in the browser.
tensorflow.jsは、ブラウザで直接使用できる機械学習ライブラリーです。

This demo is using tensorflow.js with the coco-ssd model.
このデモでは、coco-ssdモデルでtensorflow.jsを使用しています。

Screen Shot 2020-04-24 at 11.00.17.pngScreen Shot 2020-04-24 at 10.56.25.png
Screen Shot 2020-04-24 at 10.55.31.png

###Objective ・ 目的
Learning how to use tensorflow.js via a simple example.
簡単な例でtensorflow.jsの使用方法を学びます。

###Implementation

For every photo, if there are detections, there is a callback with the following information:

  • Object type
  • Detection reliability (between 0 and 1)
  • Bounding box

すべての写真について、検出があると、次の情報を含むコールバックがあります。

  • オブジェクトタイプ
  • 検出の信頼性(0から1の間)
  • 境界ボックス

The bounding boxes are drawn on a canvas over the original picture.
境界ボックスは、元の画像の上にキャンバスに描画されます。

<!DOCTYPE html>
<html>

<head>

  <!-- Bootstrap CSS -->
  <link rel="stylesheet" href="//stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" crossorigin="anonymous" playsinline>

  <!-- jQuery & Bootstrap JS -->
  <script src="//code.jquery.com/jquery-3.3.1.slim.min.js" crossorigin="anonymous"></script>
  <script src="//cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js" crossorigin="anonymous"></script>
  <script src="//stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js" crossorigin="anonymous"></script>

  <!-- Load TensorFlow.js -->
  <script src="//cdn.jsdelivr.net/npm/@tensorflow/tfjs@1.7.2/dist/tf.min.js"></script>
  <!-- Load the coco-ssd model. -->
  <script src="//cdn.jsdelivr.net/npm/@tensorflow-models/coco-ssd@2.0.2/dist/coco-ssd.js"></script>

  <style>
    body {
      text-align: left;
    }

    .img {
      position: absolute;
      z-index: 1;
      max-width: 100%;
      height: auto;
    }

    #main_container {
      display: inline-block;
      margin: 0 auto;
      position: relative;
    }

    #cv1 {
      position: relative;
      z-index: 20;
    }

    #top_div {
      padding: 1em;
    }

    #loader_div {
      display: inline-block;
    }

    #spinner_div {
      display: inline-block;
    }
  </style>
</head>

<body>
  <div>

    <div id="top_div">
      <H2>Coco SSD + tensorflowjs</H2>
      <div id="loader_div">
        <p id="loader_info">Loading model...
          <p />
      </div>

      <div id="spinner_div" class="spinner-border" role="status">
        <span class="sr-only"></span>
      </div>
      <br></br>
      <input id="input_btn" type='file' />
    </div>
    <br></br>
    <div class="container" id="main_container">
      <img class="img" id="img" width="640" width="360">
      <canvas class="canvas" id="cv1"></canvas>
    </div>
  </div>
  <script type="text/javascript">
    var img;
    var c = document.getElementById("cv1");
    var ctx = c.getContext("2d");


    var img = document.getElementById('img');
    var isModelLoaded = false;
    var globalModel = null;

    //Load the model.
    cocoSsd.load().then(model => {
      isModelLoaded = true;
      updateTitle();
      if (document.getElementById("img").src != "") {
        startPredictions(model, img);
      }
    });

    function startPredictions(model, img) {
      model.detect(img).then(predictions => {
        predictions.map((item, index) => {
          console.log(item);
          let borderColor = getColorByIndex(index);
          draw(item, borderColor);
        });
      });
    }

    function resizeCanvas(element) {
      var w = element.offsetWidth;
      var h = element.offsetHeight;
      var cv = document.getElementById("cv1");
      cv.width = w;
      cv.height = h;
    }

    function draw(item, boderColor) {
      let scorePercentage = (parseFloat(item.score) * 100).toFixed(2);
      let fontBase = 1000;
      let fontSize = 12;
      let textColor = "#FF0000";
      let backgroundColor = "rgba(255, 255, 255, 0.7)"; //"#fff";

      ctx.beginPath();
      ctx.rect(item.bbox[0], item.bbox[1], item.bbox[2], fontSize + 5);
      ctx.fillStyle = backgroundColor;
      ctx.fill();
      ctx.font = `bold ${fontSize}px sans-serif`;
      ctx.fillStyle = textColor;
      ctx.fillText("  " + item.class + "  " + scorePercentage + "%", item.bbox[0], item.bbox[1] + fontSize);
      ctx.rect(item.bbox[0], item.bbox[1], item.bbox[2], item.bbox[3]);
      ctx.strokeStyle = boderColor;
      ctx.lineWidth = 3;
      ctx.stroke();
    }

    function getColorByIndex(index) {
      var color = "#FF0000";
      var colors = ["#FF0000", "#fff000", "#ff7100", "#8fff00", "#7100ff", "#f000ff", "#00fff0"];
      try {
        if (index < colors.length - 1) {
          color = colors[index];
        } else {
          let random = Math.floor(Math.random() * ((colors.length - 1) + 1));
          color = colors[random];
        }
      } catch (e) {
        console.log(e);
      }
      return color;
    }

    //Image loading 
    window.addEventListener('load', function() {
      document.querySelector('input[type="file"]').addEventListener('change', function() {
        if (this.files && this.files[0]) {
          var img = document.querySelector('img');
          img.src = URL.createObjectURL(this.files[0]);
          img.onload = imageIsLoaded;
        }
      });
    });

    function imageIsLoaded() {
      resizeCanvas(img);
      cocoSsd.load().then(model => {
        if (isModelLoaded) {
          startPredictions(model, img);
        }
      });
    }

    function updateTitle() {
      var title = document.getElementById("loader_info");
      title.textContent = "Model loaded successfully";
      var element = document.getElementById("spinner_div");
      element.classList.remove("spinner-border");
    }

    function getFont(canvas, fontSize, fontBase) {
      var ratio = fontSize / fontBase;
      var size = canvas.width * ratio;
      return (size | 0) + 'px bold sans-serif';
    }
  </script>
</body>

</html>

###DEMO ・ デモ
https://codepen.io/mr1985/pen/LYpWVyo

###Information sources ・ 情報元
https://www.tensorflow.org/
https://www.pexels.com/

6
5
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
6
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?