10
9

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

OpenCV-python + piped FFMPEG の使用法

Last updated at Posted at 2019-03-08

##はじめに

こんにちは streampack チームのメディです。
https://cloudpack.jp/service/option/streampack.html

##Copyrights
Big Buck Bunny
© copyright 2008, Blender Foundation | www.bigbuckbunny.org

##Objective ・ 目的
Screen Shot 2019-03-08 at 15.38.09.png

Learn how to use OpenCV python with FFMPEG & VP8.
FFMPEGとVP8OpenCV pythonを使う方法を学びましょう。

###Requirements
FFMPEG must be installed on your system.
FFMPEGがシステムにインストールされている必要があります。
On mac, you can run :
たとえば、macでは:

brew install ffmpeg

OpenCV python installation ・OpenCV pythonのインストール

 pip3 install opencv-python

##About OpenCV & codecs ・ OpenCVとコーデックについて

By default OpenCV is shipped with royalty free codecs only.
For using non free codecs, you can compile OpenCV yourself (which takes time) or you can pipe OpenCV with FFMPEG.
デフォルトでは、OpenCVにはロイヤリティフリーのコーデックしかありません。
フリーではないコーデックを使用するには、OpenCVを自分でコンパイルするか(時間がかかります)、またはOpenCVをFFMPEGでパイプ処理することができます。

##Royalty free codecs ・ ロイヤリティフリーコーデック
Screen Shot 2019-03-08 at 14.52.37.png

In this example we will use the VP8 codec.
この例ではVP8コーデックを使用します。

NB : OpenCV uses BGR color format.
注意 : OpenCVは BGR カラーフォーマットを使います。

####Implementation ・ 実装

import cv2
import os
import time
import sys

# Don't forget to check the framerate of your input file !! You can check with : ffprobe yourFile.mp4

out = cv2.VideoWriter(
            "output.mkv", cv2.VideoWriter_fourcc(*'VP80'), 25.0,
            (720,400))

# The input file is located in the current working directory.
cap = cv2.VideoCapture(os.getcwd()+"/"+'Big_Buck_Bunny_Trailer_400p.ogv')

if (cap.isOpened()== False): 
  print("Error opening video stream or file")
 

while(cap.isOpened()):
  ret, frame = cap.read()
  if ret == True:
    
    # Do something with the frame...
    ts = time.time()
    cv2.putText(frame ,"Timestamp : " + str(ts), (15, 15),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 255, 0), 2)
                        
    out.write(frame)
    
    # Press Q on keyboard to  exit
    if cv2.waitKey(25) & 0xFF == ord('q'):
      break
 
  else: 
    break
 
 # Cleaning
out.release()
cap.release()
cv2.destroyAllWindows()

##Standard Output (stdout) piped to FFMPEG & FFPLAY

Screen Shot 2019-03-08 at 15.20.02.png

NB : OpenCV uses BGR color format.
注意 : OpenCVは BGR カラーフォーマットを使います。

Data from OpenCV to FFPLAY ・ OpenCVからFFPLAYへのデータ

python3 simple.py | ffplay -f rawvideo -pix_fmt bgr24 -s 720x400 -framerate 25 -i -

Data from OpenCV to FFMPEG ・ OpenCVからFFMPEGへのデータ

In this example we will use the libx264 encoder.
この例では libx264 エンコーダを使用します。

python3 simple.py | ffmpeg  -f rawvideo -pix_fmt bgr24 -s 720x400 -framerate 25 -i - -c:v libx264 output.mp4

Implementation ・ 実装

import cv2
import os
import time
import sys

# Don't forget to check resolution & framerate !! You can check with : ffprobe yourFile.mp4

# Simple playback
# python3 simple.py | ffplay -f rawvideo -pix_fmt bgr24 -s 720x400 -framerate 25 -i -

# Encoding 
# python3 simple.py | ffmpeg  -f rawvideo -pix_fmt bgr24 -s 720x400 -framerate 25 -i - -c:v libx264 output.mp4

# The input file is located in the current working directory.
cap = cv2.VideoCapture(os.getcwd()+"/"+'Big_Buck_Bunny_Trailer_400p.ogv')

if (cap.isOpened()== False): 
  print("Error opening video stream or file")
 

while(cap.isOpened()):
  ret, frame = cap.read()
  if ret == True:
      
    # Do something  with the frame...
    ts = time.time()
    cv2.putText(frame ,"Timestamp : " + str(ts), (15, 15),
                cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 255, 0), 2)
    
    # We send the frame to the standard output, then FFMPEG will catch it and process it
    sys.stdout.buffer.write(frame.tobytes())
    
    # Press Q on keyboard to  exit
    if cv2.waitKey(25) & 0xFF == ord('q'):
      break
 
  else: 
    break
 
 # Cleaning
cap.release()
cv2.destroyAllWindows()

###Information sources ・ 情報源
https://pypi.org/project/opencv-python/
https://www.ffmpeg.org/
https://commons.wikimedia.org/wiki/File:Big_Buck_Bunny_Trailer_400p.ogv

10
9
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
10
9

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?