5
10

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

LightGBMカスタムメトリクスのサンプル

Posted at

毎回リファレンス確認しながら書いてるカスタムメトリクス。
ローカルにソース転がってたので、備忘録として挙げておく。

# サンプルコード

from sklearn.metrics import roc_auc_score
from sklearn.metrics import average_precision_score

def calc_accuracy(y_pred, y_true):
    metric = np.mean(y_true == y_pred)
    return 'accuracy', metric, True

def calc_precision(y_pred, y_true):
    metric = precision_score(y_true, y_pred)
    return 'precison', metric, True

def calc_recall(y_pred, y_true):
    metric = recall_score(y_true, y_pred)
    return 'recall', metric, True

def calc_fscore(fscores):
    metric = np.max(fscores)
    return 'fscore', metric, True

def calc_auc(y_pred, y_true):
    metric = roc_auc_score(y_true, y_pred)
    return 'auc', metric, True

def calc_prauc(y_pred, y_true):
    metric = average_precision_score(y_true, y_pred)
    return 'prauc', metric, True

# CV用評価関数算出メソッド
def acquire_custom_metircs(preds ,data):
    precisions, recalls, thresholds = precision_recall_curve(data.get_label(), preds, pos_label=1)
    thresholds = np.append(thresholds, 1)
    fscores = 2 * precisions * recalls / (precisions + recalls)
    threshold_max_fscore = thresholds[np.argmax(fscores)]

    y_true = data.get_label()
    y_pred = np.where(preds > 0.5, 1, 0)

    return [
        calc_accuracy(y_pred, y_true),   Accuracy
        calc_precision(y_pred, y_true),   Precision
        calc_recall(y_pred, y_true),  # Recall
        calc_fscore(fscores),  # F1 score
        calc_auc(y_pred, y_true),  # ROC AUC
        calc_prauc(y_pred, y_true)  # PR AUC
    ]

# CV
histroy = lgb.cv(
    best,
    dtrain, 
    folds=StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=0), 
    feval=acquire_custom_metircs,   CVで使う評価関数に自作関数を指定
    num_boost_round=cons_val_num_boost_round, 
    early_stopping_rounds=cons_val_early_stopping_rounds, 
    verbose_eval=cons_val_verbose_eval, 
    show_stdv=False, 
    seed=0
)
5
10
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
5
10

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?