0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

【統計検定準1級対策③】二項分布の確率関数,期待値,分散,母関数の導出過程

Last updated at Posted at 2022-04-09

結論

確率関数

f(x) = {}_{n}C_{x}p^x(1-p)^{n-x} \ \  (x = 0,1,\cdots,n)

期待値,分散

E[X] = np, \ \ V[X]=np(1-p)

母関数

G(s) = (ps+1-p)^n

期待値の導出

二項分布は,ベルヌーイ試行($X_1,\cdots,X_n$)の結果の和($X_1+\cdots+X_n=X$)が従う分布でした。

したがって,期待値の線形性(「和の期待値」=「期待値の和」という性質)を使って

\begin{align*}
E[X] &= E[X_1 + \cdots + X_n]\\
&= E[X_1] + \cdots + E[X_n]\\
&= \underbrace{p + \cdots + p}_{n \text{個}} = np
\end{align*}

分散の導出

分散も,期待値の時と同じ考え方です。

$X,Y$が独立ならば,$V[X\pm Y] =V[X]+V[Y]$なので

\begin{align*}
V[X] &= V[X_1 + \cdots + X_n]\\
&= V[X_1] + \cdots + V[X_n]\\
&= \underbrace{p(1-p) + \cdots + p(1-p)}_{n \text{個}} = np(1-p)

\end{align*}

母関数の導出

こちらも期待値・分散のときと同様,二項分布はベルヌーイ分布の和であることを利用します。

ここでは,$X,Y$が独立であることの定義:$E[XY]=E[X]E[Y]$を用いています。

確率母関数の定義:$G(s)=E[s^X]$ から,

\begin{align*}
G(s) &= E[s^X]\\
&= E[s^{X_1+\cdots+X_n}]\\
&= E[s^{X_1}\times \cdots \times s^{X_n}]\\
&= E[s^{X_1}]\times \cdots \times E[s^{X_n}]\\
&= \underbrace{(ps+1-p) \times \cdots \times (ps+1-p)}_{n \text{個}} = (ps+1-p)^n
\end{align*}

まとめリンク

【統計検定準1級対策】確率分布の確率関数,期待値,分散,母関数まとめ

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?