0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

【統計検定準1級対策④】ポアソン分布の確率関数,期待値,分散,母関数まとめ

Posted at

結論

確率関数

f(x) = \frac{\lambda^x}{x!}e^{-\lambda}\ \ (x=0,1,2,\cdots)

期待値,分散

E[X] = V[X] = \lambda

母関数

G(s) = e^{\lambda(s-1)}

期待値の導出

期待値の定義:$E[X] = \sum_{x}xf(x)$から,

\begin{align*}
E[X] &= \sum_{x=0}^{\infty}x\frac{\lambda^x}{x!}e^{-\lambda}\\
&= 0+\sum_{x=1}^{\infty}x\frac{\lambda^x}{x!}e^{-\lambda}\\
&= \lambda e^{-\lambda}\sum_{x=1}^{\infty}\frac{\lambda^{x-1}}{(x-1)!}\\
&= \lambda e^{-\lambda}\cdot e^{\lambda}\ \ (\because \text{Taylor展開の式:}e^x=\sum_{n=0}^{\infty}\frac{x^{n}}{n!})\\
&= \lambda
\end{align*}

分散の導出

関係式:$V[X]=E[X^2]−(E[X])^2$から,

\begin{align*}
V[X] &= \sum_{x=0}^{\infty}x^2\frac{\lambda^x}{x!}e^{-\lambda} - \lambda^2\\
&= \sum_{x=0}^{\infty}(x^2-x+x)\frac{\lambda^x}{x!}e^{-\lambda} - \lambda^2\ \ (\text{ムリヤリ変形})\\
&= \sum_{x=0}^{\infty}(x(x-1)+x)\frac{\lambda^x}{x!}e^{-\lambda} - \lambda^2\\
&= \sum_{x=0}^{\infty}x(x-1)\frac{\lambda^x}{x!}e^{-\lambda} + \sum_{x=0}^{\infty}x\frac{\lambda^x}{x!}e^{-\lambda} - \lambda^2\\
&= \left(0 + 0 + \sum_{x=2}^{\infty}x(x-1)\frac{\lambda^x}{x!}e^{-\lambda}\right) + \left(0 + \sum_{x=1}^{\infty}x\frac{\lambda^x}{x!}e^{-\lambda}\right) - \lambda^2\\
&= \lambda^2 e^{-\lambda}\sum_{x=2}^{\infty}\frac{\lambda^{x-2}}{(x-2)!} + \lambda e^{-\lambda}\sum_{x=1}^{\infty}\frac{\lambda^{x-1}}{(x-1)!} - \lambda^2\\
&= \lambda^2e^{-\lambda}\cdot e^\lambda + \lambda e^{-\lambda}\cdot e^\lambda - \lambda^2 \ \ (\because \text{Taylor展開の公式})\\
&= \lambda
\end{align*}

母関数の導出

確率母関数の定義:$G(s)=E[s^X]$ から,

\begin{align*}
G(s) &= \sum_{x=0}^{\infty}s^x\frac{\lambda^x}{x!}e^{-\lambda}\\
&= e^{-\lambda}\sum_{x=0}^{\infty}\frac{(s\lambda)^x}{x!}\\
&= e^{-\lambda}\cdot e^{s\lambda}\ \ (\because \text{Taylor展開の公式})\\
&= e^{\lambda(s-1)}
\end{align*}

ポアソン分布は二項分布の極限であることの証明

二項分布の確率関数

{}_{n}C_{x}p^x(1-p)^{n-x}

において,$p=\frac{\lambda}{n}$とおき,$n\to\infty$の極限をとるとポアソン分布になります。

実際,

\begin{align*}
\lim_{n\to\infty} {}_{n}C_{x}\left(\frac{\lambda}{n}\right)^x\left(1-\frac{\lambda}{n}\right)^{n-x} 
&= \lim_{n\to\infty} \frac{n(n-1)\cdots (n-x+1)}{x!}\frac{\lambda^x}{n^x}\left(1-\frac{\lambda}{n}\right)^{n-x}\\
&= \lim_{n\to\infty} \frac{n(n-1)\cdots (n-x+1)}{n^x}\frac{\lambda^x}{x!}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-x}\\
&= \lim_{n\to\infty} 
1\cdot\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{x-1}{n}\right)
\frac{\lambda^x}{x!}
\left\{\left(1-\frac{\lambda}{n}\right)^{-n/\lambda}\right\}^{-\lambda}
\left(1-\frac{\lambda}{n}\right)^{-x}\\
&= \frac{\lambda^x}{x!}e^{-\lambda}\ \ \left(\because \lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e\right)
\end{align*}

まとめリンク

【統計検定準1級対策】確率分布の確率関数,期待値,分散,母関数まとめ

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?