4
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

PyTorch Metric Learning で深層距離学習 (Deep Metric Learning)

Last updated at Posted at 2022-08-20

PyTorch Metric Learning をGoogle Colaboratory 上で使って深層距離学習 (Deep Metric Learning) をしてみました。深層距離学習は、ラベルつきのデータに対して、同じラベルのデータは近くに、違うラベルのデータは遠くに位置するように「距離」を学習する深層学習です(浅い理解)。

PyTorch Metric Learning インストール

次のようにしてインストールします。

!pip install pytorch-metric-learning
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting pytorch-metric-learning
  Downloading pytorch_metric_learning-1.5.2-py3-none-any.whl (111 kB)
[K     |████████████████████████████████| 111 kB 30.4 MB/s 
[?25hRequirement already satisfied: torchvision in /usr/local/lib/python3.7/dist-packages (from pytorch-metric-learning) (0.13.1+cu113)
Requirement already satisfied: torch>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from pytorch-metric-learning) (1.12.1+cu113)
Requirement already satisfied: scikit-learn in /usr/local/lib/python3.7/dist-packages (from pytorch-metric-learning) (1.0.2)
Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from pytorch-metric-learning) (4.64.0)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from pytorch-metric-learning) (1.21.6)
Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from torch>=1.6.0->pytorch-metric-learning) (4.1.1)
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->pytorch-metric-learning) (1.1.0)
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->pytorch-metric-learning) (3.1.0)
Requirement already satisfied: scipy>=1.1.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->pytorch-metric-learning) (1.7.3)
Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.7/dist-packages (from torchvision->pytorch-metric-learning) (7.1.2)
Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from torchvision->pytorch-metric-learning) (2.23.0)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->torchvision->pytorch-metric-learning) (1.24.3)
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->torchvision->pytorch-metric-learning) (3.0.4)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->torchvision->pytorch-metric-learning) (2.10)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->torchvision->pytorch-metric-learning) (2022.6.15)
Installing collected packages: pytorch-metric-learning
Successfully installed pytorch-metric-learning-1.5.2

PyTorch をインポートし、GPUが使える環境なら使うようにしておきます。

import torch
device = 'cuda' if torch.cuda.is_available() else 'cpu'

エンコーダーの定義

エンコーダーを定義します。ここでは、簡単な MLP (Multi-Layer Perceptron) を用いたいと思います。出力は、結果を2次元で表示したいため2次元にします。

class Encoder(torch.nn.Module):
    def __init__(self, n_input, n_hidden, n_output):
        super(Encoder, self).__init__()
        self.l1 = torch.nn.Linear(n_input, n_hidden)
        self.l2 = torch.nn.Linear(n_hidden, n_hidden)
        self.l3 = torch.nn.Linear(n_hidden, n_output)

    def forward(self, x):
        x = torch.sigmoid(self.l1(x))
        x = torch.sigmoid(self.l2(x))
        return self.l3(x)

学習とテスト用の関数

次のように学習とテスト用の関数を定義します。

def train(model, loss_func, mining_func, device, dataloader, optimizer, epoch): 
    model.train() 
    total_loss = 0
    for idx, (inputs, labels) in enumerate(dataloader):
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        embeddings = model(inputs)
        indices_tuple = mining_func(embeddings, labels)
        loss = loss_func(embeddings, labels, indices_tuple)
        loss.backward()
        optimizer.step()
        total_loss += loss.detach().cpu().numpy()
    return total_loss

def test(model, dataloader, device, epoch):
    model.eval()
    with torch.no_grad():    
        total_loss = 0
        for idx, (inputs, labels) in enumerate(dataloader):
            inputs, labels = inputs.to(device), labels.to(device)
            optimizer.zero_grad()
            embeddings = model(inputs)
            indices_tuple = mining_func(embeddings, labels)
            loss = loss_func(embeddings, labels, indices_tuple)
            total_loss += loss.detach().cpu().numpy()
    return total_loss

アヤメのデータセット

みんな大好きアヤメのデータを使ってみましょう。データのロードをして、念のため、データの形状も確認しておきます。

from sklearn.datasets import load_iris

dataset = load_iris()
dataset.data.shape, dataset.target.shape
((150, 4), (150,))

説明変数 X と目的変数 Y を設定し、training data と test data に分けます。

import numpy as np

index = np.arange(dataset.target.size)
train_index = index[index % 2 != 0]
test_index = index[index % 2 == 0]

X_train = torch.tensor(dataset.data[train_index, :], dtype=torch.float)
Y_train = torch.tensor(dataset.target[train_index], dtype=torch.float)

X_test = torch.tensor(dataset.data[test_index, :], dtype=torch.float)
Y_test = torch.tensor(dataset.target[test_index], dtype=torch.float)

それぞれデータローダーに格納します。

from torch.utils.data import DataLoader, TensorDataset

batch_size = 16
train_loader = DataLoader(TensorDataset(X_train, Y_train), batch_size=batch_size, shuffle=True)
test_loader = DataLoader(TensorDataset(X_test, Y_test), batch_size=batch_size, shuffle=True)

PyTorch Metric Learning の距離や損失関数などの定義をします。

from pytorch_metric_learning.distances import CosineSimilarity
from pytorch_metric_learning.reducers import ThresholdReducer
from pytorch_metric_learning.losses import TripletMarginLoss
from pytorch_metric_learning.miners import TripletMarginMiner

n_hidden = 64
n_output = 2
epochs = 1000
lr = 1e-6

distance = CosineSimilarity()
reducer = ThresholdReducer(low = 0)
loss_func = TripletMarginLoss(margin=0.2, distance=distance, reducer=reducer)
mining_func = TripletMarginMiner(margin=0.2, distance=distance)

model = Encoder(X_train.shape[1], n_hidden, n_output).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)

次のようにして学習し、学習履歴を控えながらベストモデルを保存します。

import copy

train_hist = []
test_hist = []
best_score = None
for epoch in range(1, epochs + 1):
    train_loss = train(model, loss_func, mining_func, device, train_loader, optimizer, epoch)
    test_loss = test(model, test_loader, device, epoch)
    train_hist.append(train_loss)
    test_hist.append(test_loss)
    if best_score is None or best_score > test_loss:
        best_score = test_loss
        best_model = copy.deepcopy(model)
        print(f'Epoch: {epoch:03d}, Train Loss: {train_loss:.5f}, Test Loss: {test_loss:.5f}')
Epoch: 001, Train Loss: 0.99241, Test Loss: 0.99168
Epoch: 004, Train Loss: 0.99197, Test Loss: 0.99157
Epoch: 005, Train Loss: 0.99184, Test Loss: 0.99112
Epoch: 006, Train Loss: 0.99191, Test Loss: 0.99100
Epoch: 007, Train Loss: 0.99216, Test Loss: 0.99047
Epoch: 019, Train Loss: 0.99193, Test Loss: 0.99007
Epoch: 020, Train Loss: 0.99030, Test Loss: 0.98973
Epoch: 029, Train Loss: 0.98955, Test Loss: 0.98950
Epoch: 030, Train Loss: 0.98932, Test Loss: 0.98945
Epoch: 032, Train Loss: 0.99002, Test Loss: 0.98943
Epoch: 033, Train Loss: 0.98978, Test Loss: 0.98882
Epoch: 036, Train Loss: 0.98944, Test Loss: 0.98817
Epoch: 037, Train Loss: 0.98881, Test Loss: 0.98781
Epoch: 045, Train Loss: 0.98826, Test Loss: 0.98778
Epoch: 046, Train Loss: 0.98845, Test Loss: 0.98754
Epoch: 048, Train Loss: 0.98850, Test Loss: 0.98718
Epoch: 049, Train Loss: 0.98801, Test Loss: 0.98657
Epoch: 054, Train Loss: 0.98790, Test Loss: 0.98631
Epoch: 057, Train Loss: 0.98673, Test Loss: 0.98624
Epoch: 061, Train Loss: 0.98507, Test Loss: 0.98622
Epoch: 063, Train Loss: 0.98740, Test Loss: 0.98552
Epoch: 064, Train Loss: 0.98496, Test Loss: 0.98522
Epoch: 065, Train Loss: 0.98623, Test Loss: 0.98479
Epoch: 066, Train Loss: 0.98739, Test Loss: 0.98457
Epoch: 068, Train Loss: 0.98605, Test Loss: 0.98423
Epoch: 072, Train Loss: 0.98687, Test Loss: 0.98345
Epoch: 078, Train Loss: 0.98376, Test Loss: 0.98231
Epoch: 084, Train Loss: 0.98555, Test Loss: 0.98156
Epoch: 088, Train Loss: 0.98206, Test Loss: 0.98103
Epoch: 090, Train Loss: 0.98197, Test Loss: 0.97928
Epoch: 092, Train Loss: 0.98035, Test Loss: 0.97912
Epoch: 098, Train Loss: 0.98070, Test Loss: 0.97863
Epoch: 102, Train Loss: 0.97971, Test Loss: 0.97859
Epoch: 103, Train Loss: 0.98025, Test Loss: 0.97698
Epoch: 112, Train Loss: 0.97765, Test Loss: 0.97587
Epoch: 116, Train Loss: 0.97657, Test Loss: 0.97489
Epoch: 117, Train Loss: 0.97636, Test Loss: 0.97482
Epoch: 118, Train Loss: 0.97627, Test Loss: 0.97418
Epoch: 123, Train Loss: 0.97289, Test Loss: 0.97315
Epoch: 124, Train Loss: 0.97541, Test Loss: 0.97285
Epoch: 125, Train Loss: 0.97386, Test Loss: 0.97226
Epoch: 127, Train Loss: 0.97387, Test Loss: 0.97167
Epoch: 129, Train Loss: 0.97161, Test Loss: 0.97128
Epoch: 130, Train Loss: 0.97204, Test Loss: 0.96956
Epoch: 136, Train Loss: 0.96793, Test Loss: 0.96867
Epoch: 137, Train Loss: 0.96949, Test Loss: 0.96524
Epoch: 145, Train Loss: 0.96681, Test Loss: 0.96377
Epoch: 146, Train Loss: 0.96643, Test Loss: 0.96127
Epoch: 154, Train Loss: 0.96524, Test Loss: 0.95935
Epoch: 157, Train Loss: 0.96106, Test Loss: 0.95819
Epoch: 160, Train Loss: 0.95964, Test Loss: 0.95784
Epoch: 161, Train Loss: 0.96107, Test Loss: 0.95578
Epoch: 164, Train Loss: 0.95951, Test Loss: 0.95568
Epoch: 165, Train Loss: 0.95686, Test Loss: 0.95538
Epoch: 166, Train Loss: 0.95955, Test Loss: 0.95265
Epoch: 175, Train Loss: 0.95063, Test Loss: 0.95086
Epoch: 177, Train Loss: 0.95025, Test Loss: 0.94941
Epoch: 178, Train Loss: 0.95392, Test Loss: 0.94616
Epoch: 182, Train Loss: 0.94772, Test Loss: 0.94466
Epoch: 183, Train Loss: 0.95053, Test Loss: 0.94061
Epoch: 185, Train Loss: 0.94653, Test Loss: 0.93809
Epoch: 189, Train Loss: 0.93748, Test Loss: 0.93564
Epoch: 195, Train Loss: 0.93677, Test Loss: 0.93552
Epoch: 197, Train Loss: 0.93782, Test Loss: 0.93293
Epoch: 198, Train Loss: 0.93335, Test Loss: 0.92084
Epoch: 210, Train Loss: 0.91781, Test Loss: 0.91578
Epoch: 213, Train Loss: 0.92099, Test Loss: 0.91287
Epoch: 216, Train Loss: 0.91053, Test Loss: 0.91281
Epoch: 218, Train Loss: 0.91712, Test Loss: 0.90644
Epoch: 220, Train Loss: 0.90175, Test Loss: 0.89513
Epoch: 227, Train Loss: 0.89674, Test Loss: 0.89301
Epoch: 229, Train Loss: 0.89202, Test Loss: 0.88476
Epoch: 233, Train Loss: 0.88466, Test Loss: 0.88371
Epoch: 235, Train Loss: 0.88655, Test Loss: 0.87473
Epoch: 239, Train Loss: 0.87748, Test Loss: 0.87354
Epoch: 241, Train Loss: 0.86688, Test Loss: 0.87266
Epoch: 242, Train Loss: 0.87744, Test Loss: 0.87083
Epoch: 243, Train Loss: 0.85890, Test Loss: 0.86515
Epoch: 244, Train Loss: 0.87090, Test Loss: 0.86103
Epoch: 245, Train Loss: 0.86939, Test Loss: 0.85576
Epoch: 247, Train Loss: 0.86642, Test Loss: 0.85376
Epoch: 248, Train Loss: 0.85294, Test Loss: 0.85292
Epoch: 249, Train Loss: 0.85714, Test Loss: 0.84361
Epoch: 254, Train Loss: 0.85107, Test Loss: 0.84044
Epoch: 255, Train Loss: 0.84156, Test Loss: 0.83828
Epoch: 256, Train Loss: 0.84330, Test Loss: 0.83485
Epoch: 258, Train Loss: 0.82744, Test Loss: 0.82655
Epoch: 261, Train Loss: 0.82307, Test Loss: 0.81493
Epoch: 263, Train Loss: 0.82220, Test Loss: 0.80559
Epoch: 266, Train Loss: 0.80849, Test Loss: 0.78984
Epoch: 272, Train Loss: 0.79612, Test Loss: 0.74984
Epoch: 275, Train Loss: 0.76995, Test Loss: 0.74395
Epoch: 282, Train Loss: 0.75578, Test Loss: 0.72727
Epoch: 284, Train Loss: 0.75554, Test Loss: 0.72121
Epoch: 286, Train Loss: 0.74829, Test Loss: 0.70264
Epoch: 289, Train Loss: 0.68119, Test Loss: 0.70008
Epoch: 290, Train Loss: 0.67815, Test Loss: 0.69433
Epoch: 291, Train Loss: 0.69742, Test Loss: 0.69429
Epoch: 292, Train Loss: 0.69399, Test Loss: 0.67597
Epoch: 293, Train Loss: 0.67784, Test Loss: 0.64868
Epoch: 294, Train Loss: 0.70161, Test Loss: 0.64649
Epoch: 297, Train Loss: 0.67725, Test Loss: 0.63933
Epoch: 298, Train Loss: 0.62987, Test Loss: 0.63854
Epoch: 299, Train Loss: 0.64286, Test Loss: 0.62260
Epoch: 301, Train Loss: 0.62527, Test Loss: 0.61840
Epoch: 305, Train Loss: 0.63836, Test Loss: 0.57104
Epoch: 308, Train Loss: 0.60170, Test Loss: 0.54871
Epoch: 310, Train Loss: 0.55816, Test Loss: 0.54775
Epoch: 315, Train Loss: 0.53502, Test Loss: 0.54425
Epoch: 320, Train Loss: 0.57343, Test Loss: 0.54019
Epoch: 321, Train Loss: 0.53485, Test Loss: 0.53040

学習曲線は次のようになりました。

import matplotlib.pyplot as plt

plt.plot(train_hist, alpha=0.5, label="Train Loss")
plt.plot(test_hist, alpha=0.5, label="Test Loss")
plt.grid()
plt.legend()
plt.show()

PyTorch_Metric_Learning_のコピーGPU_31_0.png

一旦ロスが落ちてから、また上がってますね...?

ベストモデルを使って説明変数を2次元にマッピングします。

embedding = {}
for X, Y in [[X_train, Y_train], [X_test, Y_test]]:
    for z, label in zip(best_model(X.to(device)), Y):
        z = z.detach().cpu().numpy()
        y = int(label.detach().cpu().numpy())
        if y not in embedding.keys():
            embedding[y] = []
        embedding[y].append(z)

for label, Z, in embedding.items():
    plt.scatter([z[0] for z in Z], [z[1] for z in Z], alpha=0.9, label=label)

plt.legend()
plt.grid()
plt.show()

PyTorch_Metric_Learning_のコピーGPU_32_0.png

うん、皆さんがよく知ってるアヤメのデータですね。ちなみに、当然ですが学習するたびに結果は変わります。別の計算例を示すと、こんな感じです。

PyTorch_Metric_Learning_のコピー_のコピーGPU_32_0.png

PyTorch_Metric_Learning_のコピー_のコピーGPU_33_0.png

乳がんデータセット

続いて、乳がんデータセットをロードして、同様に深層距離学習してみましょう。

from sklearn.datasets import load_breast_cancer

dataset = load_breast_cancer()
dataset.data.shape, dataset.target.shape
((569, 30), (569,))

上記のようにロードする部分は当然違うのですが、それ以外は同じコードを流用できます。

PyTorch_Metric_Learning_のコピー_のコピーGPU_8_0.png

PyTorch_Metric_Learning_のコピー_のコピーGPU_9_0.png

同じデータに対する別の計算例

PyTorch_Metric_Learning_のコピーGPU_8_0.png

PyTorch_Metric_Learning_のコピーGPU_9_0.png

ワインのデータセット

ワインのデータセットに関しても、ロードの部分以外は同じです。

from sklearn.datasets import load_wine

dataset = load_wine()
dataset.data.shape, dataset.target.shape
((178, 13), (178,))

PyTorch_Metric_Learning_のコピーGPU_16_0.png

PyTorch_Metric_Learning_のコピーGPU_17_0.png

PyTorch_Metric_Learning_のコピー_のコピーGPU_16_0.png

PyTorch_Metric_Learning_のコピー_のコピーGPU_17_0.png

png

手書き数字データセット

手書き数字データセットについても同様に。

from sklearn.datasets import load_digits

dataset = load_digits()
dataset.data.shape, dataset.target.shape
((1797, 64), (1797,))

PyTorch_Metric_Learning_のコピーGPU_24_0.png

PyTorch_Metric_Learning_のコピーGPU_25_0.png

うーん、あまりキレイに分かれてないですね。

手書き数字データセットは画像データなので、次のように model を CNN に置き換えたら結果は良くなるでしょうか?

import numpy as np

index = np.arange(dataset.target.size)
train_index = index[index % 2 != 0]
test_index = index[index % 2 == 0]

X_train = torch.tensor(dataset.data[train_index, :].reshape(-1, 1, 8, 8), dtype=torch.float)
Y_train = torch.tensor(dataset.target[train_index], dtype=torch.float)

X_test = torch.tensor(dataset.data[test_index, :].reshape(-1, 1, 8, 8), dtype=torch.float)
Y_test = torch.tensor(dataset.target[test_index], dtype=torch.float)
class CNN(torch.nn.Module):
    def __init__(self):
        super(CNN, self).__init__()

        self.conv_layers = torch.nn.Sequential(
            torch.nn.Conv2d(in_channels = 1, out_channels = 16, kernel_size = 2, stride=1, padding=0),
            torch.nn.Conv2d(in_channels = 16, out_channels = 32, kernel_size = 2, stride=1, padding=0),
        )

        self.dence = torch.nn.Sequential(
            torch.nn.Linear(32 * 6 * 6, 128),
            torch.nn.Sigmoid(),
            torch.nn.Dropout(p=0.2),
            torch.nn.Linear(128, 64),
            torch.nn.Sigmoid(),
            torch.nn.Dropout(p=0.2),
            torch.nn.Linear(64, 2),
        )
         

    def forward(self,x):
        x = self.conv_layers(x)
        x = x.view(x.size(0), -1)
        x = self.dence(x)
        return x
     

    def check_cnn_size(self, size_check):
        out = self.conv_layers(size_check)
         
        return out

model = CNN().to(device) 

PyTorch_Metric_Learning_のコピー_のコピーGPU_25_0.png

PyTorch_Metric_Learning_のコピー_のコピーGPU_26_0.png

んー、あんま変わらんような...ちょっとは良くなったのかな?もうちょっと頑張って条件検討したら良くなるかも知れないけど。

4
5
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
4
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?