Help us understand the problem. What is going on with this article?

Caffeモデルで画像認識をやっChainerヨ!

Google Colaboratory 上で Chainer 使って、学習済みの Caffe モデルを使う練習

oxford102.caffemodel のダウンロード

花の画像から、花の名前を予測する Caffe モデルです

# URL によるリソースへのアクセスを提供するライブラリをインポートする。
import urllib.request 
# ウェブ上のリソースを指定する
url = 'https://s3.amazonaws.com/jgoode/oxford102.caffemodel'
# 指定したURLからリソースをダウンロードし、名前をつける。
urllib.request.urlretrieve(url, 'oxford102.caffemodel') 
('oxford102.caffemodel', <http.client.HTTPMessage at 0x7ff854b81b00>)

Chainer による Caffe モデルの利用

from chainer.links import caffe
func = caffe.CaffeFunction('oxford102.caffemodel')
/usr/local/lib/python3.6/dist-packages/chainer/links/caffe/caffe_function.py:174: UserWarning: Skip the layer "data", since CaffeFunction does not support it
  'support it' % layer.name)

画像処理してから予測まで

import urllib.request 
from PIL import Image
import numpy as np
import chainer
import chainer.functions as F

filename = "whatisyourname.jpg"
def guess_flower_name(url, filename=filename):
    labels = ['pink primrose', 'hard-leaved pocket orchid', 'canterbury bells', 'sweet pea', 
              'english marigold', 'tiger lily', 'moon orchid', 'bird of paradise', 'monkshood', 
              'globe thistle', 'snapdragon', "colt's foot", 'king protea', 'spear thistle', 
              'yellow iris', 'globe-flower', 'purple coneflower', 'peruvian lily', 'balloon flower', 
              'giant white arum lily', 'fire lily', 'pincushion flower', 'fritillary', 'red ginger', 
              'grape hyacinth', 'corn poppy', 'prince of wales feathers', 'stemless gentian', 
              'artichoke', 'sweet william', 'carnation', 'garden phlox', 'love in the mist', 
              'mexican aster', 'alpine sea holly', 'ruby-lipped cattleya', 'cape flower', 
              'great masterwort', 'siam tulip', 'lenten rose', 'barbeton daisy', 'daffodil', 
              'sword lily', 'poinsettia', 'bolero deep blue', 'wallflower', 'marigold', 
              'buttercup', 'oxeye daisy', 'common dandelion', 'petunia', 'wild pansy', 
              'primula', 'sunflower', 'pelargonium', 'bishop of llandaff', 'gaura', 'geranium', 
              'orange dahlia', 'pink-yellow dahlia?', 'cautleya spicata', 'japanese anemone', 
              'black-eyed susan', 'silverbush', 'californian poppy', 'osteospermum', 
              'spring crocus', 'bearded iris', 'windflower', 'tree poppy', 'gazania', 'azalea', 
              'water lily', 'rose', 'thorn apple', 'morning glory', 'passion flower', 'lotus', 
              'toad lily', 'anthurium', 'frangipani', 'clematis', 'hibiscus', 'columbine', 
              'desert-rose', 'tree mallow', 'magnolia', 'cyclamen ', 'watercress', 'canna lily', 
              'hippeastrum ', 'bee balm', 'ball moss', 'foxglove', 'bougainvillea', 'camellia', 
              'mallow', 'mexican petunia', 'bromelia', 'blanket flower', 'trumpet creeper', 
              'blackberry lily']
    urllib.request.urlretrieve(url, filename)
    image = Image.open(filename).convert('RGB')
    w, h = image.size
    fixed_w, fixed_h = 224, 224
    if w > h:
        shape = (int(fixed_w * w / h), fixed_h)
    else:
        shape = (fixed_w, int(fixed_h * h / w))

    left = (shape[0] - fixed_w) / 2
    right = left + fixed_w
    top = (shape[1] - fixed_h) / 2
    bottom = top + fixed_h

    image = image.resize(shape)
    image = image.crop((left, top, right, bottom)) 

    x_data = np.asarray(image).astype(np.float32)
    x_data = x_data.transpose(2, 0, 1)
    x_data = x_data[::-1, :, :]

    mean_image = np.zeros(3*fixed_w*fixed_h).reshape(3, fixed_w, fixed_h).astype(np.float32)
    mean_image[0] = 103
    mean_image[1] = 117
    mean_image[2] = 123

    x_data -= mean_image
    x_data = np.array([x_data])

    x = chainer.Variable(x_data)
    func = caffe.CaffeFunction('oxford102.caffemodel')
    y, = func(inputs={'data': x}, outputs=['fc8_oxford_102'])

    prob = F.softmax(y)

    for i in range(5):
        idx = np.argsort(prob.data[0])[::-1][i]
        print(i + 1, "\t", labels[idx], "\t", prob.data[0][idx])

    return image

guess_flower_name('https://d1f5hsy4d47upe.cloudfront.net/93/936a7824f1041bfef2cbe7d96c1fc7cc_t.jpeg')
/usr/local/lib/python3.6/dist-packages/chainer/links/caffe/caffe_function.py:174: UserWarning: Skip the layer "data", since CaffeFunction does not support it
  'support it' % layer.name)


1    carnation   0.6862433
2    wallflower      0.075164974
3    corn poppy      0.057577945
4    hibiscus    0.037174866
5    great masterwort    0.033413775

output_3_2.png

url = "https://c8.alamy.com/comp/HMWBKR/crimson-cattleya-or-ruby-lipped-cattleya-cattleya-labiata-candida-HMWBKR.jpg"
guess_flower_name(url)
/usr/local/lib/python3.6/dist-packages/chainer/links/caffe/caffe_function.py:174: UserWarning: Skip the layer "data", since CaffeFunction does not support it
  'support it' % layer.name)


1    carnation   0.56166863
2    sword lily      0.4131709
3    camellia    0.0039400724
4    bearded iris    0.003937593
5    ruby-lipped cattleya    0.003253354

output_4_2.png

Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
Comments
No comments
Sign up for free and join this conversation.
If you already have a Qiita account
Why do not you register as a user and use Qiita more conveniently?
You need to log in to use this function. Qiita can be used more conveniently after logging in.
You seem to be reading articles frequently this month. Qiita can be used more conveniently after logging in.
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
ユーザーは見つかりませんでした