0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

PRML 演習問題2.24 解答

Last updated at Posted at 2020-06-05

##問題

(2.76)の両辺に次の行列(2.287)を掛け. また(2.77)の定義を用いることで(2.76)の恒等式を証明せよ.

\begin{pmatrix}
A&B\\
C&D
\end{pmatrix}^{-1}
=
\begin{pmatrix}
M&-MBD^{-1}\\
-D^{-1}CM&D^{-1}+D^{-1}CMBD^{-1}
\end{pmatrix}
\tag{2.76}
\begin{pmatrix}
A&B\\
C&D
\end{pmatrix}
\tag{2.287}
M=(A-BD^{-1}C)^{-1}
\tag{2.77}

##方針
誘導に従い(2.287)を(2.76)の両辺にかけ整理
あとで便利なので$M^{-1}=(A-BD^{-1}C)$を示しておく。

##解法
まず右辺から

\begin{pmatrix}
A&B\\
C&D
\end{pmatrix}
\begin{pmatrix}
A&B\\
C&D
\end{pmatrix}^{-1}
=I

次に左辺

\begin{pmatrix}
A&B\\
C&D
\end{pmatrix}
\begin{pmatrix}
M&-MBD^{-1}\\
-D^{-1}CM&D^{-1}+D^{-1}CMBD^{-1}
\end{pmatrix}
=
\begin{pmatrix}
AM-BD^{-1}CM&A(-MBD^{-1})+B(D^{-1}+D^{-1}CMBD^{-1})\\
CM+D(-D^{-1}CM)&-CMBD^{-1}+DD^{-1}+DD^{-1}CMBD^{-1}
\end{pmatrix}

左上

\begin{align*}
\mathrm{AM-BD^{-1}CM}
&=\mathrm{(A-BD^{-1}C)M}\\
&=\mathrm{M^{-1}M}\\
&=1 
\end{align*}

右上

\begin{align*}
\mathrm{A\bigl(-MBD^{-1}\bigr)+B\bigl(D^{-1}+D^{-1}CMBD^{-1}\bigr)}
&=\mathrm{MBD^{-1}\bigl(CBD^{-1}-A\bigr)+BD^{-1}}\\
&=\mathrm{-MBD^{-1}M^{-1}+BD^{-1}}\\
&=0
\end{align*}

左下

\begin{align*}
\mathrm{CM-DD^{-1}CM=0}
\end{align*}

右下

\begin{align*}
\mathrm{-CMBD^{-1}+DD^{-1}+DD^{-1}CMBD^{-1}}&=\mathrm{DD^{-1}}\\
&=1
\end{align*}

まとめると

\begin{pmatrix}
1&0\\
0&1
\end{pmatrix}
=I

したがって左辺=右辺より(2.76)の恒等式は示された

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?