0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

PRML 演習問題 5.39 解答

Last updated at Posted at 2020-07-15

##問題

ラプラス近似の結果(4.135)を用いて, ベイズニューラルネットワークモデルにおける超パラメータ$\mathbf{\alpha, \beta}$のエビデンス関数が(5.175)で近似できることを示せ.

\begin{align*}
\mathrm{Z}&=\mathrm{\int{f(z)dz}}\\
&\simeq\mathrm{f(z_0)\int{exp}\Bigl\{-\frac{1}{2}(z-z_0)^TA(z-z_0)\Bigr\}dz}\\
&=\mathrm{f(z_0)\frac{(2\pi)^{M/2}}{|A|^{1/2}}}
\tag{4.135}
\end{align*}
\begin{align*}
\mathrm{lnp(D|{\alpha},\beta)\simeq-E(w_{MAP})-\frac{1}{2}|A|+\frac{W}{2}ln\alpha+\frac{N}{2}ln\beta-\frac{N}{2}ln(2\pi)}
\tag{5.175}
\end{align*}

##方針

超パラメータのエビデンスはネットワーク重みを

\begin{align*}
\mathrm{p(D|\alpha,{\beta})=\int{p}(D|w,\beta)p(w|\alpha)dw}
\tag{5.174}
\end{align*}

のように積分することで得られる.これはラプラス近似の結果(4.135)を用いると容易に評価される. これの対数を取ると(5.175)が与えられる.

つまり題意を示すには(5.174)をラプラス近似の結果(4.135)を用いて変形し, (5.175)に帰着させればよい.

##解答

\begin{align*}
\mathrm{p(D|\alpha,{\beta})=\int{p}(D|w,\beta)p(w|\alpha)dw}
\tag{5.174}
\end{align*}

において$\mathrm{f(w)=p(D|w,\beta)p(w|\alpha),Z=p(D|{\alpha},\beta)}$として(4.135)を適用すると($\mathbf{W}$は$\mathbf{w}$の次元)
式変形に以下を利用

\begin{align*}
\mathrm{p(w|\alpha)=N(w|0,\alpha^{-1}I)}
\tag{5.162}\\
\mathrm{p(D|w,\beta)=\prod^N_{n=1}N\bigl(t_n|y(x_n,w),\beta^{-1}\bigr)}
\tag{5.163}
\end{align*}
\begin{align*}
\mathrm{Z{\simeq}f(w_{MAP})}&=\mathrm{p(D|w_{MAP},\beta)p(w_{MAP}|\alpha)}\\
&=\mathrm{\prod_{n=1}^NN(t_n|y(x_n,w_{MAP}),\beta^{-1})N(w_{MAP}|0,\alpha^{-1}I)}\\
&=\mathrm{\prod_{n=1}^N\frac{1}{(2\pi)^{1/2}}\frac{1}{(\beta^{-1})^{1/2}}exp\Bigl[-\frac{1}{2\beta^{-1}}\bigl\{t_n-y(x_n,w_{MAP})\bigr\}^2\Bigr]\frac{1}{(2\pi)^{w/2}}\frac{1}{|\alpha^{-1}I|^{1/2}}exp\Bigl\{-\frac{1}{2}w^T_{MAP}(\alpha^{-1}I)^{-1}w_{MAP}\Bigr\}}\\
&=\mathrm{\prod^N_{n=1}\Bigl(\frac{\beta}{2\pi}\Bigr)^{1/2}exp\Bigl[-\frac{\beta}{2}\bigl\{t_n-y(x_n,w_{MAP})\bigr\}^2\Bigr]\Bigl(\frac{\alpha}{2\pi}\Bigr)exp\bigl(-\frac{\alpha}{2}w^T_{MAP}w_{MAP}\bigr)}
\end{align*}

よって

\begin{align*}
\mathrm{lnp(D|{\alpha},\beta)}&\simeq\mathrm{{ln}f(w_{MAP})+\frac{W}{2}ln(2\pi)-\frac{1}{2}ln|A|}\\
&=\mathrm{\sum^N_{n=1}\Bigl[\frac{1}{2}\bigl\{ln\beta-ln(2\pi)\bigr\}-\frac{\beta}{2}\bigl\{t_n-y(x_n,w_{MAP})\bigr\}^2\Bigr]}\mathrm{+\frac{W}{2}\bigl\{ln\alpha-ln(2\pi)\bigr\}-\frac{\alpha}{2}w^T_{MAP}w_{MAP}+\frac{W}{2}ln(2\pi)-\frac{1}{2}ln|A|}\\
&=\mathrm{-\Bigl[\frac{\beta}{2}\sum^N_{n=1}\bigl\{t_n-y(x_n,w_{MAP})\bigr\}^2+\frac{\alpha}{2}w^T_{MAP}w_{MAP}\Bigr]}\mathrm{-\frac{1}{2}ln|A|+\frac{N}{2}ln\beta-\frac{N}{2}ln(2\pi)+\frac{W}{2}ln\alpha}\\
&=\mathrm{-E(w_{MAP})-\frac{1}{2}ln|A|+\frac{N}{2}ln\beta-\frac{N}{2}ln(2\pi)+\frac{W}{2}ln\alpha}
\tag{5.175}
\end{align*}

したがって題意は示された.

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?