4
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

初心者がGoogle Analytics Customer Revenue Predictionに挑戦してみた(その1)

Last updated at Posted at 2018-09-16

##参加するコンペ
Google Analytics Customer Revenue Prediction
https://www.kaggle.com/c/google-analytics-customer-revenue-prediction

##はじめに何をしたか
####データをlocalに落とし、以下フォルダを作成
input, output

####データをjupyter notebookで見てみる

https://www.kaggle.com/dimitreoliveira/deep-learning-keras-revenue-pred-in-progress
を参考にし冒頭のデータ読み込み部分を実行

####ライブラリの読み込み

import os
import json
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas.io.json import json_normalize
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Dense
from keras import optimizers

%matplotlib inline
pd.options.display.max_columns = 999

####データを読み込むための関数を作成

def load_df(csv_path='../input/train.csv', nrows=None):
    JSON_COLUMNS = ['device', 'geoNetwork', 'totals', 'trafficSource']

    df = pd.read_csv(csv_path, dtype={'fullVisitorId': 'str'}, nrows=nrows)

    for column in JSON_COLUMNS:
        df = df.join(pd.DataFrame(df.pop(column).apply(pd.io.json.loads).values.tolist(), index=df.index))

    return df

####学習データの読み込み

%%time
train = load_df("input/train.csv")

この際にErrorが発生したため, train.csv, test.csv, samplesubmission.csv に対して以下を実行

chmod 755 *

####テストデータの読み込み

%%time
test = load_df("../input/test.csv")

####日付を日付型に変更

def add_time_features(df):
    df['date'] = pd.to_datetime(df['date'], format='%Y%m%d', errors='ignore')
    df['year'] = df['date'].apply(lambda x: x.year)
    df['month'] = df['date'].apply(lambda x: x.month)
    df['day'] = df['date'].apply(lambda x: x.day)
    df['weekday'] = df['date'].apply(lambda x: x.weekday())
    
    return df

train = add_time_features(train)
test = add_time_features(test)

####transactionRevenue を見るためにfloat型に変換

train["transactionRevenue"] = train["transactionRevenue"].astype('float')

####時間で目標の値がどう変化しているかを確認

time_agg = train.groupby('date')['transactionRevenue'].agg(['count', 'sum'])
year_agg = train.groupby('year')['transactionRevenue'].agg(['sum'])
month_agg = train.groupby('month')['transactionRevenue'].agg(['sum'])
day_agg = train.groupby('day')['transactionRevenue'].agg(['sum'])
weekday_agg = train.groupby('weekday')['transactionRevenue'].agg(['count','sum'])

image.png

####年ごと、月ごと、日ごと、曜日ごとに見てみる

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize=(20,7))
ax1.scatter(year_agg.index.values, year_agg['sum'])
ax1.locator_params(nbins=2)
ax1.ticklabel_format(axis='y', style='plain')
ax1.set_xlabel('Year', fontsize=12)

ax2.scatter(month_agg.index.values, month_agg['sum'])
ax2.locator_params(nbins=12)
ax2.ticklabel_format(axis='y', style='plain')
ax2.set_xlabel('Month', fontsize=12)

ax3.scatter(day_agg.index.values, day_agg['sum'])
ax3.locator_params(nbins=10)
ax3.ticklabel_format(axis='y', style='plain')
ax3.set_xlabel('Day', fontsize=12)

ax4.scatter(weekday_agg.index.values, weekday_agg['sum'])
ax4.locator_params(nbins=7)
ax4.ticklabel_format(axis='y', style='plain')
ax4.set_xlabel('Weekday', fontsize=12)

plt.tight_layout()
plt.show()

image.png

####分析から

  • Year : 2016年から2017年にかけて、増加した
  • Month : 12月が増大するのはわかるが、4月と8月になぜ増加しているのか
  • Day : 重要でないことが起きている可能性がある
  • Weekday : 週末の取引が少ない

###コードを綺麗にする
####辞書型列を削除

train = train.drop(['adwordsClickInfo'], axis=1)
test = test.drop(['adwordsClickInfo'], axis=1)

####学習データのみ存在する列を削除

train = train.drop(['campaignCode'], axis=1)

####transactionRevenueのNaNを0に置き換え

train["transactionRevenue"].fillna(0, inplace=True)

####テストデータのidを取得

test_ids = test["fullVisitorId"].values

####必要のない列を削除

unwanted_columns = ['fullVisitorId', 'sessionId', 'visitId', 'visitStartTime', 
                    'browser', 'browserSize', 'browserVersion', 'flashVersion', 
                    'mobileDeviceInfo', 'mobileDeviceMarketingName', 'mobileDeviceModel', 
                    'mobileInputSelector', 'operatingSystemVersion', 'screenColors', 
                    'metro','networkDomain', 'networkLocation', 'adContent', 'campaign', 
                    'isTrueDirect', 'keyword', 'referralPath', 'source', 'operatingSystem',
                    'date', 'day']

train = train.drop(unwanted_columns, axis=1)
test = test.drop(unwanted_columns, axis=1)

####全て同じ値の列を削除

constant_columns = [col for col in train.columns if train[col].nunique()<=1]
print('Columns with constant values: ', constant_columns)
train = train.drop(constant_columns, axis=1)
test = test.drop(constant_columns, axis=1)

####半分以上がnullのデータ列を削除

high_null_columns = [c for c in train.columns if train[c].count()<=len(train) * 0.5]
print('Columns more than 50% null values: ', high_null_columns)
train = train.drop(high_null_columns, axis=1)
test = test.drop(high_null_columns, axis=1)

####特徴量を削減するために該当列を削除

reduce_features = ['city', 'year', 'medium', 'channelGrouping', 
                    'region', 'subContinent', 'country']
train = train.drop(reduce_features, axis=1)
test = test.drop(reduce_features, axis=1)

####データを確認

print('TRAIN SET')
print('Rows: %s' % train.shape[0])
print('Columns: %s' % train.shape[1])
print('Features: %s' % train.columns.values)
print()
print('TEST SET')
print('Rows: %s' % test.shape[0])
print('Columns: %s' % test.shape[1])
print('Features: %s' % test.columns.values)

####カテゴリデータをOne-hot encoding

categorical_features = ['deviceCategory', 'isMobile', 'continent', 'month', 'weekday']
train = pd.get_dummies(train, columns=categorical_features)
test = pd.get_dummies(test, columns=categorical_features)

###学習データ作成
####学習データからラベルを取得

train_labels = train['transactionRevenue'].values
train = train.drop(['transactionRevenue'], axis=1)

####ダミー変数を作成した際に、列の数が異なってしまったため以下を実施し,0で置き換え

train, test = train.align(test, join='outer', axis=1)

# replace the nan values added by align for 0
train.replace(to_replace=np.nan, value=0, inplace=True)
test.replace(to_replace=np.nan, value=0, inplace=True)

####訓練データ作成

X_train, X_val, Y_train, Y_val = train_test_split(train, train_labels, test_size=0.1, random_state=1)

####学習に必要な設定

BATCH_SIZE = 128
EPOCHS = 5
LEARNING_RATE = 0.001

####モデル作成

model = Sequential()
model.add(Dense(512, kernel_initializer='glorot_normal', activation='relu', input_dim=X_train.shape[1]))
model.add(Dense(256, kernel_initializer='glorot_normal', activation='relu'))
model.add(Dense(64, kernel_initializer='glorot_normal', activation='relu'))
model.add(Dense(32, kernel_initializer='glorot_normal', activation='relu'))
model.add(Dense(1))

adam = optimizers.adam(lr=LEARNING_RATE)
model.compile(loss='mse', optimizer=adam)

####学習

history = model.fit(x=X_train.values, y=Y_train, batch_size=BATCH_SIZE, epochs=EPOCHS, 
                    verbose=2, validation_data=(X_val.values, Y_val))

####テストデータに対して、予測

predictions = model.predict(test)

####提出ファイル作成

submission = pd.DataFrame({"fullVisitorId":test_ids})
submission.loc[:, 'PredictedLogRevenue'] = np.log1p(predictions)
grouped_test = submission[['fullVisitorId', 'PredictedLogRevenue']].groupby('fullVisitorId').sum().reset_index()
grouped_test.to_csv('submit.csv',index=False)

###結果
エラーになってしまい提出できませんでした、、、、(別のカーネルに取り組みます)

4
3
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
4
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?