Help us understand the problem. What is going on with this article?

オフラインリアルタイムどう書く第四回の参考問題をHaskellで書いた

More than 5 years have passed since last update.

オフラインリアルタイムどう書く第四回の参考問題をHaskellで書きました。

アルゴリズムは単純な深さ優先探索です。
通行止めがない5×5のグラフを予めハードコーデリングしているのがイマイチです。。。

fukashigi.hs
import Data.List

type Path = (Char,Char)
type Graph = [Path]
graph = [
        ('a','b'),('a','f'),
        ('b','c'),('b','g'),('b','a'),
        ('c','d'),('c','h'),('c','b'),
        ('d','e'),('d','i'),('d','c'),
        ('e','j'),('e','d'),
        ('f','a'),('f','g'),('f','k'),
        ('g','b'),('g','h'),('g','l'),('g','f'),
        ('h','c'),('h','i'),('h','m'),('h','g'),
        ('i','d'),('i','j'),('i','n'),('i','h'),
        ('j','e'),('j','o'),('j','i'),
        ('k','f'),('k','l'),('k','p'),
        ('l','g'),('l','m'),('l','q'),('l','k'),
        ('m','h'),('m','n'),('m','r'),('m','l'),
        ('n','i'),('n','o'),('n','s'),('n','m'),
        ('o','j'),('o','t'),('o','n'),
        ('p','k'),('p','q'),('p','u'),
        ('q','l'),('q','r'),('q','v'),('q','p'),
        ('r','m'),('r','s'),('r','w'),('r','q'),
        ('s','n'),('s','t'),('s','x'),('s','r'),
        ('t','o'),('t','y'),('t','s'),
        ('u','p'),('u','v'),
        ('v','q'),('v','w'),('v','u'),
        ('w','r'),('w','x'),('w','v'),
        ('x','s'),('x','y'),('x','w'),
        ('y','t'),('y','x')
        ] :: Graph


makeGraph :: IO Graph
makeGraph = do
    line <- getLine
    let removedPath = concatMap (\(x:y:[]) -> [(x,y),(y,x)]) $ words line
    let removedGraph = foldr delete graph removedPath
    return removedGraph


dfs p g graph px | p == g = 1
                 | p `elem` px = 0
                 | otherwise = sum [dfs np g graph (p:px) | np <- nextp p]
                 where
                    nextp p = [y | (x,y) <- graph, x == p]

main = do
    removedGraph <- makeGraph
    print $ dfs 'a' 'y' removedGraph []

他の過去問も解いています。(解けそうな問題から書いてます。。。汗)

Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away