0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

逆行列

Posted at

前回

前回では行列をLU分解した。
今回はLU分解した行列の逆行列を求める。
前回作成したlu_decomposition関数は引き続き使用する。

下三角行列Lの逆行列

ソースコード

def inverse_l(l):
  length = len(l)
  il = np.eye(length)

  for i in range(1,length):
    for j in range(i):
      il[i,j] = -l[i,j]
      for k in range(j+1,i):
        il[i,j] -= l[i,k] * il[k,j]
  return il

np.set_printoptions(linewidth=150)
a = np.random.rand(5,5)
l, u = lu_decomposition(a)
il = inverse_l(l)

print('L\n', l)
print('L^{-1}\n', il)
print('L * L^{-1}\n', l.dot(il))
print('L^{-1} * L\n', il.dot(l))

出力結果

L
 [[ 1.          0.          0.          0.          0.        ]
 [ 1.14616816  1.          0.          0.          0.        ]
 [ 1.34499533  2.23780925  1.          0.          0.        ]
 [ 1.10881862  0.92510343 -0.19976126  1.          0.        ]
 [ 0.59746136 -0.5427907   0.222358    1.1189475   1.        ]]
L^{-1}
 [[ 1.          0.          0.          0.          0.        ]
 [-1.14616816  1.          0.          0.          0.        ]
 [ 1.21991038 -2.23780925  1.          0.          0.        ]
 [ 0.19519631 -1.37213103  0.19976126  1.          0.        ]
 [-1.70926204  2.57572808 -0.44588037 -1.1189475   1.        ]]
L * L^{-1}
 [[1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00]
 [5.55111512e-17 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00]
 [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]
L^{-1} * L
 [[ 1.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
 [ 0.00000000e+00  1.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
 [ 0.00000000e+00  0.00000000e+00  1.00000000e+00  0.00000000e+00  0.00000000e+00]
 [ 0.00000000e+00 -1.11022302e-16  0.00000000e+00  1.00000000e+00  0.00000000e+00]
 [ 2.22044605e-16  2.22044605e-16  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

上三角行列Uの逆行列

ソースコード

def inverse_u(u):
  length = len(u)
  iu = np.zeros((length, length))

  for i in range(length):
    for j in range(i, length):
      tmp = 0 if i != j else 1
      for k in range(i,j):
        tmp -= iu[i,k] * u[k,j]
      iu[i,j] = tmp / u[j,j]
  return iu

np.set_printoptions(linewidth=150)
a = np.random.rand(5,5)
l, u = lu_decomposition(a)
iu = inverse_u(u)

print('U\n', u)
print('U^{-1}\n', iu)
print('U * U^{-1}\n', u.dot(iu))
print('U^{-1} * U\n', iu.dot(u))

出力結果

U
 [[ 0.31491714  0.52824061  0.35026388  0.5302676   0.15019698]
 [ 0.         -1.06948835 -0.4657366  -0.3557189   0.56946014]
 [ 0.          0.         -0.4410975  -0.38212418 -0.01388272]
 [ 0.          0.          0.         -1.04239703 -0.48815709]
 [ 0.          0.          0.          0.          0.40882289]]
U^{-1}
 [[ 3.17543845  1.56840936  0.86551327  0.76284342 -2.41103133]
 [ 0.         -0.93502655  0.98725584 -0.04283178  1.28480456]
 [ 0.          0.         -2.26707247  0.83106838  0.91535678]
 [ 0.          0.          0.         -0.95932737 -1.14548983]
 [ 0.          0.          0.          0.          2.44604702]]
U * U^{-1}
 [[ 1.00000000e+00 -3.48270747e-17  1.14348072e-17 -9.71222523e-17 -6.57160923e-18]
 [ 0.00000000e+00  1.00000000e+00  2.84641731e-17  7.23787024e-17 -1.85570429e-16]
 [ 0.00000000e+00  0.00000000e+00  1.00000000e+00  7.35095055e-17  4.55219411e-17]
 [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00 -7.33637720e-17]
 [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]
U^{-1} * U
 [[ 1.00000000e+00  1.80153811e-17 -7.71326778e-17 -2.31860133e-16 -7.43377334e-17]
 [ 0.00000000e+00  1.00000000e+00 -2.31203199e-18 -6.05873099e-18 -1.64000591e-17]
 [ 0.00000000e+00  0.00000000e+00  1.00000000e+00  5.35325757e-17 -3.82652839e-18]
 [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00  6.88020856e-18]
 [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

元の行列の逆行列

ソースコード

a = np.random.rand(5,5)
l, u = lu_decomposition(a)
il = inverse_l(l)
iu = inverse_u(u)
ia = iu.dot(il)

print('a\n', a)
print('a^{-1}\n', ia)
print('a * a^{-1}\n', a.dot(ia))
print('a^{-1} * a\n', ia.dot(a))

出力結果

a
 [[0.77920088 0.1471498  0.12865165 0.85940836 0.08181253]
 [0.16269642 0.9075763  0.99422554 0.54888386 0.23620424]
 [0.56614793 0.69306587 0.77175149 0.91403137 0.21029721]
 [0.66274032 0.77909366 0.37639368 0.57952536 0.88788831]
 [0.07098181 0.87230157 0.22465406 0.82722447 0.38804975]]
a^{-1}
 [[  9.57427605  10.08736519 -14.45904346   0.21468055  -0.8140454 ]
 [ 13.03504096  15.31052423 -21.92218184  -0.44649226   0.83434764]
 [ -6.65020152  -6.45261992  10.92073055   0.18126003  -1.00330376]
 [ -7.73321467  -9.66683796  13.65916377  -0.2849802    0.76425409]
 [-10.71766426 -11.91899126  16.48371559   1.46697502  -0.19799977]]
a * a^{-1}
 [[ 1.00000000e+00 -3.76312255e-16  3.30140460e-15  2.00929848e-16  7.86733982e-18]
 [ 2.97110501e-15  1.00000000e+00  4.41381135e-15 -1.66752070e-16  2.64946104e-16]
 [ 2.85341323e-15 -1.99495978e-15  1.00000000e+00  5.38596575e-18  1.03655022e-16]
 [-8.49519864e-16 -7.10786885e-15  9.97693462e-15  1.00000000e+00  9.09196633e-17]
 [ 1.00869260e-14  9.77628210e-15 -7.31079258e-15 -7.57730822e-16  1.00000000e+00]]
a^{-1} * a
 [[ 1.00000000e+00 -2.20867121e-15 -3.25909098e-15 -1.77358142e-15  1.70542576e-16]
 [ 2.43341874e-15  1.00000000e+00 -1.31749913e-15  1.89853211e-15 -5.99409485e-18]
 [-9.42007514e-16 -3.74486862e-15  1.00000000e+00 -2.35845894e-15 -6.10110897e-16]
 [ 4.81060848e-15  7.47562435e-15  7.94852745e-15  1.00000000e+00  1.29595009e-15]
 [ 5.57567989e-16  1.46424490e-15  2.93137817e-15  5.09057328e-16  1.00000000e+00]]

まとめ

前回の記事と合わせて、任意の正方行列の逆行列を求めるソースコードを作成した。
逆行列が存在しない行列に対してはエラーを起こしてしまうが、私が使用する場面では逆行列が存在しないことはほとんど起こらないので、エラー処理だけしておいて、P行列は作成しない。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?