1
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Detectronの中身を一部を理解してみる2

Last updated at Posted at 2019-07-10

親記事はVideopose3Dを理解してみる(メモ)です.
Videopose3Dの中のdetectronの機能を使うinfer_simple.pyを理解するために少しこちらに遷移してきました。
infer_simple.py内で呼び出された宣言について軽く理解していきたいと思います。

主にこの記事でみるのは、この関数の戻り値の一つであるcls_boxesの値です。
人を検知して得られた箱の4点の座標を表すための値と、確率を表すスコアが入っていると想定しています。確認してみます。

#im_detect_allを理解してみる

この関数内の条件は主にこのコードでの入力のarg.cfg(=e2e_keypoint_rcnn_R-101-FPN_s1x.yaml)のBoolean型の変数のTrue,Falseになっています。

このコードを確認して、条件文で当てはまらないところはコメントアウトしています。

test.py

def im_detect_all(model, im, box_proposals, timers=None):
    if timers is None:
        timers = defaultdict(Timer)

    # Handle RetinaNet testing separately for now
    #if cfg.RETINANET.RETINANET_ON:
        #cls_boxes = test_retinanet.im_detect_bbox(model, im, timers)
        #return cls_boxes, None, None

    timers['im_detect_bbox'].tic()
    #if cfg.TEST.BBOX_AUG.ENABLED:
        #scores, boxes, im_scale = im_detect_bbox_aug(model, im, box_proposals)
    #else:
        scores, boxes, im_scale = im_detect_bbox(
            model, im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes=box_proposals
        )
    timers['im_detect_bbox'].toc()

なおこのとき、cfg.TEST.SCALE=800, cfg.TEST.MAX_SIZE=1333です。
すこしdetectron/core/test_retinanet.py内で定義されているim_detect_bboxに遷移してみます。
(長いです)

test_retinanet.py
def im_detect_bbox(model, im, timers=None):
    """Generate RetinaNet detections on a single image."""
    if timers is None:
        timers = defaultdict(Timer)
    # Although anchors are input independent and could be precomputed,
    # recomputing them per image only brings a small overhead
    anchors = _create_cell_anchors()
    timers['im_detect_bbox'].tic()
    k_max, k_min = cfg.FPN.RPN_MAX_LEVEL, cfg.FPN.RPN_MIN_LEVEL
    A = cfg.RETINANET.SCALES_PER_OCTAVE * len(cfg.RETINANET.ASPECT_RATIOS)
    inputs = {}
    inputs['data'], im_scale, inputs['im_info'] = \
        blob_utils.get_image_blob(im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE)
    cls_probs, box_preds = [], []
    for lvl in range(k_min, k_max + 1):
        suffix = 'fpn{}'.format(lvl)
        cls_probs.append(core.ScopedName('retnet_cls_prob_{}'.format(suffix)))
        box_preds.append(core.ScopedName('retnet_bbox_pred_{}'.format(suffix)))
    for k, v in inputs.items():
        workspace.FeedBlob(core.ScopedName(k), v.astype(np.float32, copy=False))

    workspace.RunNet(model.net.Proto().name)
    cls_probs = workspace.FetchBlobs(cls_probs)
    box_preds = workspace.FetchBlobs(box_preds)

    # here the boxes_all are [x0, y0, x1, y1, score]
    boxes_all = defaultdict(list)

boxes_allには**here the boxes_all are [x0, y0, x1, y1, score]**と書かれています。
それでは目的のcls_boxesまでもう少し!detectionsを中心に見ていきましょう。

test_retinanet.py
    cnt = 0
    for lvl in range(k_min, k_max + 1):
        # create cell anchors array
        stride = 2. ** lvl
        cell_anchors = anchors[lvl]

        # fetch per level probability
        cls_prob = cls_probs[cnt]
        box_pred = box_preds[cnt]
        cls_prob = cls_prob.reshape((
            cls_prob.shape[0], A, int(cls_prob.shape[1] / A),
            cls_prob.shape[2], cls_prob.shape[3]))
        box_pred = box_pred.reshape((
            box_pred.shape[0], A, 4, box_pred.shape[2], box_pred.shape[3]))
        cnt += 1

        #if cfg.RETINANET.SOFTMAX:
            #cls_prob = cls_prob[:, :, 1::, :, :]

        cls_prob_ravel = cls_prob.ravel()
        # In some cases [especially for very small img sizes], it's possible that
        # candidate_ind is empty if we impose threshold 0.05 at all levels. This
        # will lead to errors since no detections are found for this image. Hence,
        # for lvl 7 which has small spatial resolution, we take the threshold 0.0
        th = cfg.RETINANET.INFERENCE_TH if lvl < k_max else 0.0
        candidate_inds = np.where(cls_prob_ravel > th)[0]
        if (len(candidate_inds) == 0):
            continue

        pre_nms_topn = min(cfg.RETINANET.PRE_NMS_TOP_N, len(candidate_inds))
        inds = np.argpartition(
            cls_prob_ravel[candidate_inds], -pre_nms_topn)[-pre_nms_topn:]
        inds = candidate_inds[inds]

        inds_5d = np.array(np.unravel_index(inds, cls_prob.shape)).transpose()
        classes = inds_5d[:, 2]
        anchor_ids, y, x = inds_5d[:, 1], inds_5d[:, 3], inds_5d[:, 4]
        scores = cls_prob[:, anchor_ids, classes, y, x]

        boxes = np.column_stack((x, y, x, y)).astype(dtype=np.float32)
        boxes *= stride
        boxes += cell_anchors[anchor_ids, :]

        if not cfg.RETINANET.CLASS_SPECIFIC_BBOX:
            box_deltas = box_pred[0, anchor_ids, :, y, x]
        else:
            box_cls_inds = classes * 4
            box_deltas = np.vstack(
                [box_pred[0, ind:ind + 4, yi, xi]
                 for ind, yi, xi in zip(box_cls_inds, y, x)]
            )
        pred_boxes = (
            box_utils.bbox_transform(boxes, box_deltas)
            if cfg.TEST.BBOX_REG else boxes)
        pred_boxes /= im_scale
        pred_boxes = box_utils.clip_tiled_boxes(pred_boxes, im.shape)
        box_scores = np.zeros((pred_boxes.shape[0], 5))
        box_scores[:, 0:4] = pred_boxes
        box_scores[:, 4] = scores

        for cls in range(1, cfg.MODEL.NUM_CLASSES):
            inds = np.where(classes == cls - 1)[0]
            if len(inds) > 0:
                boxes_all[cls].extend(box_scores[inds, :])
    timers['im_detect_bbox'].toc()

    # Combine predictions across all levels and retain the top scoring by class
    timers['misc_bbox'].tic()
#detectionsを定義
    detections = []
    for cls, boxes in boxes_all.items():
        cls_dets = np.vstack(boxes).astype(dtype=np.float32)

ここで疑問です!npモジュールのvstack関数って何するの?

###np.vstackって何?
配列同士を縦方向に連結する関数

example_vstack.py
In [1]: import numpy as np

In [2]: a = np.arange(12).reshape(-1,1) # 12個の要素を持つ縦ベクトル

In [3]: b = np.arange(2).reshape(-1,1) # 2個の要素を持つ縦ベクトル

In [4]: a
Out[4]:
array([[ 0],
       [ 1],
       [ 2],
       [ 3],
       [ 4],
       [ 5],
       [ 6],
       [ 7],
       [ 8],
       [ 9],
       [10],
       [11]])

こんな感じです。

test_retinanet.py
        # do class specific nms here
        #if cfg.TEST.SOFT_NMS.ENABLED:
            #cls_dets, keep = box_utils.soft_nms(
                #cls_dets,
                #sigma=cfg.TEST.SOFT_NMS.SIGMA,
                #overlap_thresh=cfg.TEST.NMS,
                #score_thresh=0.0001,
                #method=cfg.TEST.SOFT_NMS.METHOD
            #)
        #else:
            keep = box_utils.nms(cls_dets, cfg.TEST.NMS)
            cls_dets = cls_dets[keep, :]
        out = np.zeros((len(keep), 6))
        out[:, 0:5] = cls_dets
        out[:, 5].fill(cls)
        detections.append(out)

    # detections (N, 6) format:
    #   detections[:, :4] - boxes
    #   detections[:, 4] - scores
    #   detections[:, 5] - classes
    detections = np.vstack(detections)
    # sort all again
    inds = np.argsort(-detections[:, 4])
    detections = detections[inds[0:cfg.TEST.DETECTIONS_PER_IM], :]

    # Convert the detections to image cls_ format (see core/test_engine.py)
    num_classes = cfg.MODEL.NUM_CLASSES
#空のリストのリストをつくる
    cls_boxes = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
#0はあけておく
    for c in range(1, num_classes):
        inds = np.where(detections[:, 5] == c)[0]
        cls_boxes[c] = detections[inds, :5]
    timers['misc_bbox'].toc()

    return cls_boxes

戻ります。

test.py
    # score and boxes are from the whole image after score thresholding and nms
    # (they are not separated by class)
    # cls_boxes boxes and scores are separated by class and in the format used
    # for evaluating results
    timers['misc_bbox'].tic()
    scores, boxes, cls_boxes = box_results_with_nms_and_limit(scores, boxes)
    timers['misc_bbox'].toc()

    if cfg.MODEL.MASK_ON and boxes.shape[0] > 0:
        timers['im_detect_mask'].tic()
        if cfg.TEST.MASK_AUG.ENABLED:
            masks = im_detect_mask_aug(model, im, boxes)
        else:
            masks = im_detect_mask(model, im_scale, boxes)
        timers['im_detect_mask'].toc()

        timers['misc_mask'].tic()
        cls_segms = segm_results(
            cls_boxes, masks, boxes, im.shape[0], im.shape[1]
        )
        timers['misc_mask'].toc()
    else:
        cls_segms = None

    if cfg.MODEL.KEYPOINTS_ON and boxes.shape[0] > 0:
        timers['im_detect_keypoints'].tic()
        if cfg.TEST.KPS_AUG.ENABLED:
            heatmaps = im_detect_keypoints_aug(model, im, boxes)
        else:
            heatmaps = im_detect_keypoints(model, im_scale, boxes)
        timers['im_detect_keypoints'].toc()

        timers['misc_keypoints'].tic()
        cls_keyps = keypoint_results(cls_boxes, heatmaps, boxes)
        timers['misc_keypoints'].toc()
    else:
        cls_keyps = None

    return cls_boxes, cls_segms, cls_keyps

box:箱の位置情報・人の確率
seg:何も入ってない
key:関節の二次元の座標が入っている
(segmentation:ピクセル単位でクラスラベルを付ける)
with:https://www.sejuku.net/blog/24672

1
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?