1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

[Python] 次元削減の実装 (PCA/ t-SNE/ UMAP)

Last updated at Posted at 2024-04-21

はじめに

次元削減(じげんさくげん、英: Dimensionality reduction、dimension reduction)とは、高次元空間から低次元空間へデータを変換しながら、低次元表現が元データの何らかの意味ある特性を保持することである。
出典:Wikipedia

PCA

主成分分析(principal component analysis; PCA)

pip install scikit-learn
from sklearn.decomposition import PCA

reducer = PCA(n_components=5) # 主成分数を指定
res = reducer.fit(array)

t-SNE

pip install scikit-learn
from sklearn.manifold import TSNE

reducer = TSNE(n_components=2)
res = reducer.fit_transform(array)

UMAP

pip install umap-learn
import umap

#上手く行かなかったら以下でリトライ
#import umap.umap_ as umap

reducer = umap.UMAP()
res = reducer.fit_transform(array)

(おまけ) k-meansクラスタリング

from sklearn.cluster import KMeans

pred = KMeans(n_clusters=8).fit(array) # クラスター数を指定
labels = pred.labels_

可視化

import matplotlib.pyplot as plt

fig = plt.figure(figsize=(3,3))
ax1 = fig.add_subplot(111)

plt.scatter(
    x=res[:,0], 
    y=res[:,1],
    alpha=1,
    s=0.1
)
plt.show()

pandas.DataFrameを用いる場合

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import umap.umap_ as umap
from sklearn.cluster import KMeans

array = np.array(df)

reducer = PCA(n_components=5) 
res = reducer.fit(array)

pred = KMeans(n_clusters=8).fit(array)
labels = pred.labels_
df['PCA_one'] = res[:,0]
df['PCA_two'] = res[:,1]
df['kmeans'] = labels


fig = plt.figure(figsize=(3,3))
ax1 = fig.add_subplot(111)

plt.scatter(
    x=df['PCA_one'], 
    y=df['PCA_two'],
    alpha=1,
    s=0.1,
    c=df['kmeans'],
    cmap='tab10'    
)
plt.show()
1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?