#p.99 ガウス過程回帰
library(mvtnorm)
data("airquality")
data=(airquality)
data=na.omit(data)
test_dat=data[101:111,]
data=data[-c(101:111),]
Y=as.numeric(data$Ozone)
X=data[,-c(1,5,6)]
X=matrix((as.numeric(unlist(X))),nrow=nrow(X),ncol=ncol(X))
diff=array(0,dim=c(nrow(X),nrow(X)))
for(j in 1:nrow(X)){
diff[j,]=apply((t(X)-X[j,])^2,2,sum)
}
#rbf
kernel=function(alpha,Ls){
return(alpha*exp(-Ls*sqrt(diff)))
}
mu=function(sitas){
return((X%*%sitas))
}
ite=10^4
ave=apply(X,2,mean)
a=1
L=1
x=c(solve(t(X)%*%kernel(a,L)%*%X)%*%t(X)%*%kernel(a,L)%*%Y)
eta=0.1
ep=0
for(l in 1:ite){
pred=mu(x)
K=kernel(a,L)
invK=solve(K+diag(ep,nrow(K)))
dmu=c(Y-pred)%*%invK%*%X
trKa=sum(diag(invK%*%kernel(1,L)))
trKL=sum(diag(-invK%*%(diff*kernel(a,L))))
invKy=invK%*%(Y-pred)
da=as.numeric(-trKa/2+c(invKy)%*%kernel(1,L)%*%c(invKy)/2)
dL=as.numeric(-trKL/2+c(invKy)%*%(diff*kernel(a,L))%*%c(invKy)/2)
x_pre=x;a_pre=a
x=c(x+eta*dmu)
a=a+eta*da
L=L+eta*dL
loglik=as.numeric(c(Y-pred)%*%invK%*%c(Y-pred))
print(loglik)
}
#予測値の乱数
pred_kernel=function(xx){
return(as.numeric(a*exp(0)-c(a*exp(-L*sqrt(apply((t(X)-xx)^2,2,sum))))%*%solve(kernel(a,L))%*%c(a*exp(-L*sqrt(apply((t(X)-xx)^2,2,sum))))))
}
pred_mu=function(xx){
return(sum(xx*x)+c(a*exp(-L*sqrt(apply((t(X)-xx)^2,2,sum))))%*%solve(kernel(a,L))%*%(Y-mu(x)))}
library(mvtnorm)
#学習データの確認
mu_vec=c()
kstar=c()
for(j in 1:nrow(X)){
vec=X[j,]
mus=c(mu(x),pred_mu(vec))
mu_vec=c(mu_vec,pred_mu(vec))
kernels=cbind(kernel(a,L),c(a*exp(-L*sqrt(apply((t(X)-vec)^2,2,sum)))))
kernels=rbind(kernels,c(a*exp(-L*sqrt(apply((t(X)-vec)^2,2,sum))),a*exp(0)))
kstar=c(kstar,pred_kernel(vec))
}
train_mu_vec=mu_vec
train_k_star=kstar
#テストデータでの確認
testY=test_dat$Ozone
mu_vec=c()
kstar=c()
rvar=c()
for(j in 1:nrow(test_dat)){
vec=c(unlist(test_dat[j,2:4]))
mus=c(mu(x),pred_mu(vec))
mu_vec=c(mu_vec,pred_mu(vec))
kernels=cbind(kernel(a,L),c(a*exp(-L*sqrt(apply((t(X)-vec)^2,2,sum)))))
kernels=rbind(kernels,c(a*exp(-L*sqrt(apply((t(X)-vec)^2,2,sum))),a*exp(0)))
kstar=c(kstar,pred_kernel(vec))
rv=rmvnorm(1, mean = mus, sigma = kernels)
rvar=c(rvar,rv[length(rv)])
}
#p.99 ガウス過程回帰 ガンマ分布正則化
library(mvtnorm)
data("airquality")
data=(airquality)
data=(na.omit(data))
test_dat=data[101:111,]
data=data[-c(101:111),]
Y=as.numeric(data$Ozone)
X=data[,-c(1,5,6)]
X=matrix((as.numeric(unlist(X))),nrow=nrow(X),ncol=ncol(X))
diff=array(0,dim=c(nrow(X),nrow(X)))
for(j in 1:nrow(X)){
diff[j,]=apply((t(X)-X[j,])^2,2,sum)
}
#rbf
kernel=function(alpha,Ls){
return(alpha*exp(-Ls*sqrt(diff)))
}
mu=function(sitas){
return((X%*%sitas))
}
ite=1000
ave=apply(X,2,mean)
a=1
L=0.5
x=c(solve(t(X)%*%kernel(a,L)%*%X)%*%t(X)%*%kernel(a,L)%*%Y)
#x=rep(1,3)
eta=0.1
ep=0.1
#ガンマ分布の正則化項
#aについて
scale_a=100
shape_a=1
#Lについて
scale_L=5
shape_L=4
for(l in 1:ite){
pred=mu(x)
K=kernel(a,L)
invK=solve(K+diag(ep,nrow(K)))
dmu=c(Y-pred)%*%invK%*%X
trKa=sum(diag(invK%*%kernel(1,L)))
trKL=sum(diag(-invK%*%(diff*kernel(a,L))))
invKy=invK%*%(Y-pred)
da=as.numeric(-trKa/2+c(invKy)%*%kernel(1,L)%*%c(invKy)/2)
dL=as.numeric(-trKL/2+c(invKy)%*%(diff*kernel(a,L))%*%c(invKy)/2)
#正則化
da=da+((shape_a-1)/a-1/scale_a)
dL=dL+((shape_L-1)/L-1/scale_L)
x=c(x+eta*dmu)
a=a+eta*da
L=L+eta*dL
loglik=as.numeric(c(Y-pred)%*%invK%*%c(Y-pred))
print(loglik)
}
#予測値の乱数
pred_kernel=function(xx){
return(as.numeric(a*exp(0)-c(a*exp(-L*sqrt(apply((t(X)-xx)^2,2,sum))))%*%solve(kernel(a,L))%*%c(a*exp(-L*sqrt(apply((t(X)-xx)^2,2,sum))))))
}
pred_mu=function(xx){
return(sum(xx*x)+c(a*exp(-L*sqrt(apply((t(X)-xx)^2,2,sum))))%*%solve(kernel(a,L))%*%(Y-mu(x)))}
library(mvtnorm)
#学習データの確認
mu_vec=c()
kstar=c()
for(j in 1:nrow(X)){
vec=X[j,]
mus=c(mu(x),pred_mu(vec))
mu_vec=c(mu_vec,pred_mu(vec))
kernels=cbind(kernel(a,L),c(a*exp(-L*sqrt(apply((t(X)-vec)^2,2,sum)))))
kernels=rbind(kernels,c(a*exp(-L*sqrt(apply((t(X)-vec)^2,2,sum))),a*exp(0)))
kstar=c(kstar,pred_kernel(vec))
}
train_mu_vec=mu_vec
train_k_star=kstar
#テストデータでの確認
testY=test_dat$Ozone
mu_vec=c()
kstar=c()
rvar=c()
for(j in 1:nrow(test_dat)){
vec=c(unlist(test_dat[j,2:4]))
mus=c(mu(x),pred_mu(vec))
mu_vec=c(mu_vec,pred_mu(vec))
kernels=cbind(kernel(a,L),c(a*exp(-L*sqrt(apply((t(X)-vec)^2,2,sum)))))
kernels=rbind(kernels,c(a*exp(-L*sqrt(apply((t(X)-vec)^2,2,sum))),a*exp(0)))
kstar=c(kstar,pred_kernel(vec))
rv=rmvnorm(1, mean = mus, sigma = kernels)
rvar=c(rvar,rv[length(rv)])
}
#p.109 t分布過程回帰
library(mvtnorm)
data("airquality")
data=(airquality)
data=na.omit(data)
test_dat=data[101:111,]
data=data[-c(101:111),]
Y=as.numeric(data$Ozone)
X=data[,-c(1,5,6)]
X=matrix((as.numeric(unlist(X))),nrow=nrow(X),ncol=ncol(X))
N=length(Y)
diff=array(0,dim=c(nrow(X),nrow(X)))
for(j in 1:nrow(X)){
diff[j,]=apply((t(X)-X[j,])^2,2,sum)
}
#rbf
kernel=function(alpha,Ls){
return(alpha*exp(-Ls*diff))
}
mu=function(sitas){
return((X%*%sitas))
}
ite=2*10^4
v=1
a=1
L=1
x=rep(1,3)
eta=10^(-6)
ep=0
for(l in 1:ite){
pred=mu(x)
K=kernel(a,L)
invK=solve(K+diag(ep,nrow(K)))
d=as.numeric(c(Y-pred)%*%invK%*%c(Y-pred))
dmu=((v+N)/(1+d/v))*c(Y-pred)%*%invK%*%X
trKa=sum(diag(invK%*%kernel(1,L)))
trKL=sum(diag(-invK%*%(diff*kernel(a,L))))
invKy=invK%*%(Y-pred)
da=as.numeric(-trKa/2+(v+N)/(2*(1+d/v))*c(invKy)%*%kernel(1,L)%*%c(invKy))
dL=as.numeric(-trKL/2-(v+N)/(2*(1+d/v))*c(invKy)%*%(diff*kernel(a,L))%*%c(invKy))
dv=-N/(2*v)+digamma((v+N)/2)/2-digamma(v/2)/2-log(1+d/v)/2+(d/(1+d/v))*(v+N)/(2*v^2)
x_pre=x;a_pre=a
x=c(x+eta*dmu)
a=a+eta*da
v=v+eta*dv
L=L+eta*dL
loglik=-N*log(pi*v)/2-log(det(K))/2+log(gamma((v+N)/2))-log(gamma(v/2))-(v+N)*log(1+d/v)
print(loglik)
}
#予測値の乱数
pred_kernel=function(xx){
return(as.numeric(a*exp(0)-c(a*exp(-L*apply((t(X)-xx)^2,2,sum)))%*%solve(kernel(a,L))%*%c(a*exp(-L*apply((t(X)-xx)^2,2,sum)))))
}
pred_mu=function(xx){
return(sum(xx*x)+c(a*exp(-L*apply((t(X)-xx)^2,2,sum)))%*%solve(kernel(a,L))%*%(Y-mu(x)))}
library(mvnfast)
library(LaplacesDemon)
#学習データの確認
mu_vec=c()
kstar=c()
for(j in 1:nrow(X)){
vec=X[j,]
mus=c(mu(x),pred_mu(vec))
mu_vec=c(mu_vec,pred_mu(vec))
kernels=cbind(kernel(a,L),c(a*exp(-L*apply((t(X)-vec)^2,2,sum))))
kernels=rbind(kernels,c(a*exp(-L*apply((t(X)-vec)^2,2,sum)),a*exp(0)))
kstar=c(kstar,pred_kernel(vec))
}
train_mu_vec=mu_vec
train_k_star=kstar
#テストデータでの確認
testY=test_dat$Ozone
mu_vec=c()
kstar=c()
rvar=c()
for(j in 1:nrow(test_dat)){
vec=c(unlist(test_dat[j,2:4]))
mus=c(mu(x),pred_mu(vec))
mu_vec=c(mu_vec,pred_mu(vec))
kernels=cbind(kernel(a,L),c(a*exp(-L*apply((t(X)-vec)^2,2,sum))))
kernels=rbind(kernels,c(a*exp(-L*apply((t(X)-vec)^2,2,sum)),a*exp(0)))
kstar=c(kstar,pred_kernel(vec))
rv=mvnfast::rmvt(1, mu = mus, sigma = kernels, df = v)
rvar=c(rvar,rv[length(rv)])
}