0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

一般の時系列回帰過程

Last updated at Posted at 2020-01-14

# AR多項式過程

library(dplyr)

data=data.frame(no=1:48,values=window(UKgas,c(1975,1),c(1999,3)))

r=4;dim=5

values=data$values

X=array(0,dim=c((nrow(data)-r),dim*r))

Y=c()

for(j in 1:(nrow(data)-r)){
  
vec=c()

for(i in 1:dim){
  
vec=c(vec,values[j:(j+r-1)]^i)  
  
}
  
X[j,]=vec

Y=c(Y,(values[r+j]))
  
}

X2=t(X)%*%X

sol_H2=eigen(X2)$vectors%*%diag(1/eigen(X2)$values)%*%t(eigen(X2)$vectors)

A=sol_H2%*%t(X)%*%Y

b=mean(Y)-sum(apply(X,2,mean)*A)

predict=X%*%A+b

result=data.frame(predict=predict,Y=Y)

N=nrow(X);

sigma_hat=sum(c(Y-X%*%A+b)^2)/N

AIC=log(sigma_hat)+2*r/N


# 罰則項付きのAR多項式過程

library(dplyr)

data=data.frame(no=1:48,values=window(UKgas,c(1975,1),c(1999,3)))

r=4;dim=5

values=data$values

X=array(0,dim=c((nrow(data)-r),dim*r))

Y=c()

for(j in 1:(nrow(data)-r)){
  
vec=c()

for(i in 1:dim){
  
vec=c(vec,values[j:(j+r-1)]^i)  
  
}
  
X[j,]=vec

Y=c(Y,(values[r+j]))
  
}

X2=t(X)%*%X


mesh=1

AIC_data=data.frame(lambda=seq(mesh,10000,mesh),AIC=0,CV=0,GCV=0)

for(i in 1:nrow(AIC_data)){

lambda=AIC_data$lambda[i]

sol_H=eigen(X2+diag(lambda,ncol(X)))$vectors%*%diag(1/eigen(X2+diag(lambda,ncol(X)))$values)%*%t(eigen(X2+diag(lambda,ncol(X)))$vectors)
  
A=sol_H%*%t(X)%*%Y

b=mean(Y)-sum(apply(X,2,mean)*A)

predict=X%*%A+b

sigma_hat=mean((Y-predict)^2)

H=X%*%sol_H%*%t(X)

AIC=length(Y)*log(2*pi+1)+length(Y)*log(sigma_hat)+2*sum(diag(H))

CV=mean(((Y-predict)/(1-diag(H)))^2)

GCV=mean(((Y-predict)/(1-mean(diag(H))))^2)

AIC_data$AIC[i]=AIC

AIC_data$GCV[i]=GCV

AIC_data$CV[i]=CV

}

plot(AIC_data$lambda,AIC_data$AIC)

lambda=min(AIC_data$lambda[AIC_data$AIC==min(AIC_data$AIC)])

sol_H=eigen(X2+diag(lambda,ncol(X)))$vectors%*%diag(1/eigen(X2+diag(lambda,ncol(X)))$values)%*%t(eigen(X2+diag(lambda,ncol(X)))$vectors)
  
A=sol_H%*%t(X)%*%Y

b=mean(Y)-sum(apply(X,2,mean)*A)

predict=X%*%A+b

result=data.frame(predict=predict,Y=Y)





# 一般の時系列回帰過程

library(dplyr)

data=data.frame(anscombe)

char=c("x1","x2","x3","x4")

char=c("x1")

r=4;cols=length(char)

values=data$y4

X=array(0,dim=c((nrow(data)-r),(1+cols)*r))


names=colnames(data)


Y=c()

for(j in 1:(nrow(data)-r)){

vec=c()

vec=c(vec,values[j:(j+r-1)])  

if(cols==1){

data_sub=array(data[,colnames(data) %in% char],dim=c(nrow(data),cols))

}else{
  
data_sub=data[,colnames(data) %in% char]  
  
}

for(i in 1:ncol(data_sub)){

vec=c(vec,data_sub[j:(j+r-1),i])  

}

X[j,]=vec

Y=c(Y,(values[r+j]))

}

X2=t(X)%*%X

sol_H2=eigen(X2)$vectors%*%diag(1/eigen(X2)$values)%*%t(eigen(X2)$vectors)

A=sol_H2%*%t(X)%*%Y

b=mean(Y)-sum(apply(X,2,mean)*A)

predict=X%*%A+b

result=data.frame(predict=predict,Y=Y)

N=nrow(X);

sigma_hat=sum(c(Y-X%*%A+b)^2)/N

AIC=log(sigma_hat)+2*r/N



0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?