0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

ボルツマンマシン コロナ社 恐神貴行先生

Last updated at Posted at 2021-11-19

# コントラスティブダイバージェンス:CD法


N=10
d=5

X=array(0,dim=c(N,d))
prob=c()
for(i in 1:d){
val=sample(1:10,2) 
prob=c(prob,val[1]/sum(val))
X[,i]=sample(0:1,N,replace=T,prob=val/sum(val))  
}

# 初期パラメータ
W=array(0.01,dim=c(d,d))
diag(w)=0
b=rep(0.1,d)
eta=0.01
ite=10

for(l in 1:ite){
  
if(l!=1){ppre=p}
p=c()
for(j in 1:N){
p=c(p,exp(-X[j,]%*%W%*%X[j,]-sum(X[j,]*b)))  
}
p=p/sum(p)

if(l==1){
  db=-apply(X*c(p),2,sum)
  dw=-t(X)%*%(X*c(p))
}else{
  db=-apply(X*c(ppre-p),2,sum)
  dw=-t(X)%*%(X*c(ppre-p))
}
   
diag(dw)=0
b=b+eta*db
w=w+eta*dw

print(sum(db^2)+sum(dw^2))
}



# コントラスティブダイバージェンス:CD法
# stochastic gradient method


N=10
d=5

X=array(0,dim=c(N,d))
prob=c()
for(i in 1:d){
val=sample(1:10,2) 
prob=c(prob,val[1]/sum(val))
X[,i]=sample(0:1,N,replace=T,prob=val/sum(val))  
}

# 初期パラメータ
W=array(0.01,dim=c(d,d))
diag(w)=0
b=rep(0.1,d)
eta=0.1
ite=10^3

df=c()

for(l in 1:ite){
  
if(l!=1){ppre=p}
j=sample(1:N,1)
p=c()
for(k in 1:N){
p=c(p,exp(-X[k,]%*%W%*%X[k,]-sum(X[k,]*b)))  
}
p=p[j]/sum(p)


if(l==1){
  db=-X[j,]*c(p)
  dw=-t(t(X[j,]))%*%t(X[j,]*c(p))
}else{
  db=-X[j,]*c(ppre-p)
  dw=-t(t(X[j,]))%*%t(X[j,]*c(ppre-p))
}
   
diag(dw)=0
b=b+eta*db
w=w+eta*dw
df=c(df,sum(db^2)+sum(dw^2))
print(sum(db^2)+sum(dw^2))
}

plot(df)


# 制限ボルツマンマシンの自由エネルギーによる回帰 p.53

N=10
d=5
M=6

X=array(0,dim=c(N,d))

for(i in 1:d){
val=sample(1:10,2) 
X[,i]=sample(0:1,N,replace=T,prob=val/sum(val))  
}

Y=sample(1:9,N,replace=T)

bv=rep(0.1,d)
bh=rep(0.1,M)
  
W=array(1,dim=c(d,M))  

ite=200
eta=0.01

df=c()

for(l in 1:ite){
  
if(l!=1){
  
bvpre=bv
bhpre=bh
Wpre=W
  
}  
  
no=sample(1:N,1)  
phx=c(1/(1+exp(-bh+t(X[no,])%*%W)))

H=c()
for(j in 1:M){
H=c(H,sample(0:1,1,replace=T,prob=c(1-phx[j],phx[j])))
}

b=bh+t(W)%*%X[no,]  
f=-sum(bv*X[no,])-log(prod(1+exp(b)))

bv=bv+eta*(f-Y[no])*X[no,]
bh=bh+eta*(f-Y[no])*H
W=W+eta*(f-Y[no])*t(t(X[no,]))%*%t(H)

if(l!=1){
df=c(df,sum((bv-bvpre)^2)+sum((bh-bhpre)^2)+sum((W-Wpre)^2))
print(sum((bv-bvpre)^2)+sum((bh-bhpre)^2)+sum((W-Wpre)^2))
} 

}

plot(df)


# 制限ボルツマンマシンの期待エネルギーによる回帰 p.59


N=10
d=5
M=6

X=array(0,dim=c(N,d))

for(i in 1:d){
val=sample(1:10,2) 
X[,i]=sample(0:1,N,replace=T,prob=val/sum(val))  
}

Y=sample(1:9,N,replace=T)

bv=rep(0.1,d)
bh=rep(0.1,M)
  
W=array(1,dim=c(d,M))  

ite=1500
eta=0.001

df=c()

for(l in 1:ite){
  
if(l!=1){
  
bvpre=bv
bhpre=bh
Wpre=W
  
}  
  
no=sample(1:N,1)  
phx=m=c(1/(1+exp(-bh+t(X[no,])%*%W)))

H=c()
for(j in 1:M){
H=c(H,sample(0:1,1,replace=T,prob=c(1-phx[j],phx[j])))
}

b=bh+t(W)%*%X[no,] 
E=-sum(bv*X[no,])-sum(b*H)
G=-sum(bv*X[no,])-sum(b*m)
bv=bv+eta*(G-Y[no])*X[no,]
bh=bh+eta*(G-Y[no])*((m-H)*E+H)
W=W+eta*(G-Y[no])*((t(t(c(X[no,])))%*%t(c(m-H)))*E+t(t(c(X[no,])))%*%t(c(H)))

if(l!=1){
df=c(df,sum((bv-bvpre)^2)+sum((bh-bhpre)^2)+sum((W-Wpre)^2))
print(sum((bv-bvpre)^2)+sum((bh-bhpre)^2)+sum((W-Wpre)^2))
} 
}

plot(df)




# p.134 動的ボルツマンマシンにおける自己回帰模型のロジスティック回帰

N=100
m=5
d=2
L=1

X=array(0,dim=c(N,m))
prob=c()
for(i in 1:m){
val=sample(1:10,2) 
prob=c(prob,val[1]/sum(val))
X[,i]=sample(0:1,N,replace=T,prob=val/sum(val))  
}

alpha=array(1,dim=c(N,m*L))
for(j in 1:L){
for(i in 1:m){
seq=(j-1) 
alpha[,seq*m+i]=sample(c(1),N,replace=T)  
}}

b=rep(5,m)
W=array(5,dim=c(m*(d-1),m))
u=array(6,dim=c(L*m,m))

eta=0.001
ite=5000

dfvec=c()
for(l in 1:ite){
  
bpre=b;upre=u;Wpre=W  
  
no=sample(c(d:N),1)
xvec=X[no,]  
xpast=X[c((no-1):(no-(d-1))),]
apast=alpha[(no-1),]
  
mt=b
for(i in 1:(d-1)){
if((d-1)>1){
mt=mt+W[(1+m*(i-1)):(i*m),]%*%c(xpast[i,])
}else{
mt=mt+W[(1+m*(i-1)):(i*m),]%*%c(xpast)
}}

for(i in 1:L){
mt=mt+u[(1+m*(i-1)):(i*m),]%*%c(apast[(1+m*(i-1)):(i*m)])
}    

EX=exp(mt)/(1+exp(mt))

b=b*(1-eta)+eta*(xvec-EX)
for(i in 1:(d-1)){
W[(1+m*(i-1)):(i*m),]=W[(1+m*(i-1)):(i*m),]*(1-eta)+eta*t(t(c(X[(no-i),])))%*%t(c(xvec-EX))  
}
for(i in 1:L){
u[(1+m*(i-1)):(i*m),]=u[(1+m*(i-1)):(i*m),]*(1-eta)+eta*t(t(c(apast[(1+m*(i-1)):(i*m)])))%*%t(c(xvec-EX))  
}  
  
df=sum(abs(b-bpre))+sum(abs(upre-u))+sum(abs(Wpre-W))
dfvec=c(dfvec,df)
print(sum(abs(b-bpre))+sum(abs(upre-u))+sum(abs(Wpre-W)))

}

plot(dfvec)


# p.135 ガウス動的ボルツマンマシン

N=100
m=5
d=2
L=1

X=array(0,dim=c(N,m))
prob=c()
for(i in 1:m){
val=sample(10:20,1) 
X[,i]=rpois(N,val) 
}

alpha=array(1,dim=c(N,m*L))
for(j in 1:L){
for(i in 1:m){
seq=(j-1) 
alpha[,seq*m+i]=sample(c(0:1),N,replace=T)  
}}

b=rep(5,m)
W=array(5,dim=c(m*(d-1),m))
u=array(6,dim=c(L*m,m))
sig=rep(1,m)


eta=0.0001
ite=10000

loglikvec=c()
dfvec=c()
Evec=c()
for(l in 1:ite){

bpre=b;upre=u;Wpre=W;sigpre=sig  

no=sample(c(d:N),1)
xvec=X[no,]  
xpast=X[c((no-1):(no-(d-1))),]
apast=alpha[(no-1),]

mt=b
E=sum(((xvec)-c(b))^2/(2*sig^2))
for(i in 1:(d-1)){
if((d-1)>1){
E=E-X[no-i,]%*%W[(1+m*(i-1)):(i*m),]%*%t(t(c(xpast[i,])))
mt=mt+W[(1+m*(i-1)):(i*m),]%*%c(xpast[i,])
}else{
E=E-X[no-i,]%*%W[(1+m*(i-1)):(i*m),]%*%t(t(c(xpast)))
mt=mt+W[(1+m*(i-1)):(i*m),]%*%c(xpast)
}}

for(i in 1:L){
E=E-apast[(1+m*(i-1)):(i*m)]%*%u[(1+m*(i-1)):(i*m),]%*%c(xvec)
mt=mt+u[(1+m*(i-1)):(i*m),]%*%c(apast[(1+m*(i-1)):(i*m)])
} 

loglik=-sum(log(2*pi*sig^2))/2-sum((xvec-mt)^2/(2*sig^2))


b=b*(1-eta)+eta*(xvec-mt)/(sig^2)

sig=sig*(1-eta)+eta*((xvec-mt)^2/(sig^3)-1/sig)

for(i in 1:(d-1)){
W[(1+m*(i-1)):(i*m),]=W[(1+m*(i-1)):(i*m),]*(1-eta)+eta*t(t(c(X[(no-i),])))%*%t(c((xvec-mt)/(sig^2)))  
}

for(i in 1:L){
u[(1+m*(i-1)):(i*m),]=u[(1+m*(i-1)):(i*m),]*(1-eta)+eta*t(t(c(apast[(1+m*(i-1)):(i*m)])))%*%t(c((xvec-mt)/(sig^2)))    
}  

df=sum(abs(b-bpre))+sum(abs(upre-u))+sum(abs(Wpre-W))+sum(abs(sigpre-sig))
dfvec=c(dfvec,df)
loglikvec=c(loglikvec,loglik)
Evec=c(Evec,E)
}

plot(loglikvec[100:ite])


0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?