0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

オンラインアルゴリズムとストリームアルゴリズム

Last updated at Posted at 2020-01-10

# オンラインアルゴリズムとストリームアルゴリズム

# p.107

k=10

z=sample(seq(0.01,1,0.01),k,replace=T)

w=rep(1,k)

y=sample(seq(0.01,1,0.01),1,replace=T)

beta=10^(-20)


n=1000

for(l in 1:n){
  
p=sum(w*z)/sum(w)  

for(i in 1:k){
  
w[i]=w[i]*beta^abs(y-z[i])  
  
}  
  

print(abs(y-p))

}




# p.127 Adaboost 練習

h_dt=function(x,a,b){
  
return((1/(1+exp(-(a*x+b)))))  
  
}

N=100

y=sample(seq(0.01,1,0.01),N,replace=T)

x=sample(seq(0.01,1,0.01),N,replace=T)


# 弱学習のパラメータ作成

cost=function(a,b){
  
return(sum((y-h_dt(x,a,b))^2))  
  
}

A=0.01;B=0.01

eta=0.001

ite=10000

h=0.01

L=1;

while(L>0.01)({
  
cost_pre=cost(A,B)  
  
A=A-eta*(cost(A+h,B)-cost(A,B))/h

B=B-eta*(cost(A,B+h)-cost(A,B))/h

L=abs(cost(A,B)-cost_pre)

})



# Adaboost

t=30

w=rep(1,N)

pi=sample(seq(0.01,1,0.01),N,replace=T)


for(l in 1:t){
  
h_vec=h_dt(x,A,B)
  
ep=mean(pi*abs(h_vec-y))  
  
beta=1/(ep/(1-ep))  

for(i in 1:N){
  
w[i]=w[i]*beta^(1-abs(h_dt(x[i],A,B)-y[i]))  
  
}

pi=w/sum(w)

print(sum(pi*abs(h_vec-y)))
  
}




# p.127 Adaboost 練習

h_dt=function(x,a,b){

return((1/(1+exp(-(a*x+b)))))  

}

N=10

y=sample(seq(0.01,1,0.01),N,replace=T)/100+0.5

# y=c(rep(1,5),rep(0,5))

x=sample(seq(0.01,1,0.01),N,replace=T)

# x=c(0.7,0.8,0.75,0.65,0.9,0.1,0.2,0.3,0.2,0.1)

# 弱学習のパラメータ作成




eta=0.001

h=0.01





# Adaboost

t=30000

w=rep(1,N)

h_mat=array(0,dim=c(t,N))

pi=sample(seq(0.01,1,0.01),N,replace=T)

params=array(0,dim=c(t,2))

beta_vec=c()

val_pre=10;val=9

for(l in 1:t){
  
if((val_pre-val)>0){  
  
val_pre=val  
  
cost=function(a,b){

return(sum(w*abs(y-h_dt(x,a,b))))  

}  

A=0.01;B=0.01
 
L=1;

while(L>0.01)({

cost_pre=cost(A,B)  

A=A-eta*(cost(A+h,B)-cost(A,B))/h

B=B-eta*(cost(A,B+h)-cost(A,B))/h

L=abs(cost(A,B)-cost_pre)

}) 

params[l,]=c(A,B)
  
h_vec=h_dt(x,A,B)

h_mat[l,]=h_vec

ep=mean(w*abs(h_vec-y))  

beta=(ep/(1-ep))  

beta_vec=c(beta_vec,beta)

h_mat_sub=h_mat

for(i in 1:N){

w[i]=w[i]*beta^(abs(y[i]-h_vec[i]))  

}

for(i in 1:l){
  
h_mat_sub[i,]=h_mat_sub[i,]*beta_vec[i]  
  
}

w=w/sum(w)

if(l==1){
  
pre=h_mat_sub[1,]  
  
}else{

pre=apply(h_mat_sub[1:l,],2,sum)

}

val=sum(abs(pre-y))

print(sum(abs(pre-y)))

}
  
}  



0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?