1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

確率論的リスク解析の数理と方法 コロナ社 金野秀敏先生

Last updated at Posted at 2022-08-17
#p.65 多重ワイブル分布 最尤法
library(survival)

data=data.frame(lung)
data=na.omit(data)

t=data$time
t0=min(t)
status=data$status-1

x=cbind(rep(1,nrow(data)),data$age,ifelse(data$sex==1,1,0),ifelse(data$sex==2,1,0),data$ph.karno,data$pat.karno,data$meal.cal/100,data$wt.loss)

ite=5*10^4
eta=10^(-6)
beta=rep(10^(-9),ncol(x))
m=0.5

for(l in 1:ite){
  
lam=log(t^m/t0)+x%*%beta  
ptx=1-exp(-exp(lam))  

dptx1=t(x)%*%c(exp(lam)*exp(-exp(lam))*status/ptx)
dptx2=-t(x)%*%c(exp(lam)*exp(-exp(lam))*(1-status)/(1-ptx))
dptx=dptx1+dptx2
dm=sum(c(log(t)*exp(lam)*exp(-exp(lam))*status/ptx)-c(log(t)*exp(lam)*exp(-exp(lam))*(1-status)/(1-ptx)))
m=m+eta*dm
beta=beta+eta*dptx
loglik=sum(status*log(ptx))+sum((1-status)*log(1-ptx))

#print(loglik)
}

avet=(1/m)*(log(t0)-x%*%beta)+log(gamma(1+1/m))

accuracyvec=c()
values=seq(0.1,0.9,0.01)

for(j in 1:length(values)){
accuracy=sum(ifelse(ptx>values[j],1,0)==status)/length(status)
accuracyvec=c(accuracyvec,accuracy)
}

plot(values,accuracyvec)


#SIRの離散近似計算 p.97
#確認中
t=c(1:20)
I=c(2,3,4,5,6,7,8,9,10,9,7,5,4,3,2,1,1,1,1,1)
S=c(18,17,16,15,14,13,12,11,10,10,rep(10,10))
R=20-(I+S)
r0=1

N=S[1]-S

beta=N[length(N)]/sum(S*I)
rinv=sum(I)/(R[length(R)]-r0)
r=1/rinv

#Pr(dN(t)=1,dR(t)=0|St-)
beta*S*I

#Pr(dN(t)=0,dR(t)=1|St-)
r*I

#sig(beta)
beta/sqrt(N[length(N)])

#sig(rinv)
rinv/sqrt(R[length(R)]-r0)



1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?