1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

サポートベクターマシン オーム社 小野田崇先生 

Last updated at Posted at 2022-09-13

#回帰問題のためのサポートベクトルマシン p.70


#サンプルデータ
data("airquality")
data=na.omit(airquality)
y=data$Ozone
x=as.matrix(data[,colnames(data)!="Ozone"])
n=nrow(x)

#サンプルデータ
data=data.frame(num=1:20,y=c(0.20, 0.10, 0.49, 0.26, 0.92, 0.95, 0.18, 0.19, 0.44, 0.79, 0.61, 0.41, 0.49, 0.34, 0.62, 0.99, 0.38, 0.22,0.71,0.40),x1=c(84,87,86,85,82,87,92,94,88,84.9,78,90,88,87,82,84,86,83,85.2,82),x2=c(61,55.5,57,57,50,50,66.5,65,60.5,49.5,49.5,61,59.5,58.4,53.5,54,60,58.8,54,56),x3=c(24.5,24,23,22.5,22,24,25,26,25,24,23,21,26,25.5,24,23,24,24,24,22),sign=0)
y=data$y*100
x=as.matrix(data[,colnames(data) %in% c("x1","x2","x3")])
n=nrow(x)

#サンプルデータ
data("AirPassengers")
Y=as.numeric(t(AirPassengers))
p=6
y=c()
x=array(0,dim=c(length(Y)-p,p))
n=nrow(x)
for(j in 1:nrow(x)){
val=Y[length(Y)-j+1]  
y=c(y,val)
vec=Y[(length(Y)-j):(length(Y)-j-p+1)]
x[j,]=vec  
}

#Newton Algorithm 

ep=0.001
C=10^(-3)
X=sample(1:(2*nrow(x)+1),(2*nrow(x)+1))
eta=10^(-2)
ite=2*10^3
lambda=1

for(l in 1:ite){
X_pre=X  
lam=X[1]
a=X[-c(1)]
a1=a[c(1:nrow(x))]
a2=a[-c(1:nrow(x))]
f1=y-ep
f2=-y-ep
for(i in 1:n){
value=sum(x%*%c(x[i,])*(a1-a2))+(a1-a2)[i]*n/C
f1[i]=f1[i]+value
f2[i]=f2[i]-value
}
df=c(sum(a1-a2),f1,f2)
mat=x%*%t(x);diag(mat)=diag(mat)+n/C
ddf=rbind(cbind(-mat,mat),cbind(mat,-mat))
ddf=cbind(c(rep(1,length(a1)),rep(-1,length(a2))),ddf)
ddf=rbind(c(0,rep(1,length(a1)),rep(-1,length(a2))),ddf)
X=X+eta*solve(ddf+diag(lambda,nrow(ddf)))%*%df
X=abs(X)
L=sum((a1-a2)*y)-ep*sum(a1+a2)-sum(t(mat*c(a1-a2))*c(a1-a2))/2
f=apply(x%*%t(x)*c(a1-a2),2,sum)
f=f[length(f):1]
b=mean(y-f)+ep
f=f+b
diff=sum((y-f)^2)
print(L)
}




plot(c(1:length(y)),y,xlim=c(1,length(y)),ylim=c(min(c(y,f)),max(c(y,f))),xlab="index",ylab="predict",col=1)

par(new=T)

plot(c(1:length(y)),f,xlim=c(1,length(y)),ylim=c(min(c(y,f)),max(c(y,f))),xlab="index",ylab="predict",col=2)



#教師なし学習へのサポートベクターアプローチ p.125
#外れ値を除外した学習データの生成法


#サンプルデータ
data("airquality")
data=na.omit(airquality)
y=data$Ozone
x=as.matrix(data[,colnames(data)!="Ozone"])
n=nrow(x)

#サンプルデータ
data=data.frame(num=1:20,y=c(0.20, 0.10, 0.49, 0.26, 0.92, 0.95, 0.18, 0.19, 0.44, 0.79, 0.61, 0.41, 0.49, 0.34, 0.62, 0.99, 0.38, 0.22,0.71,0.40),x1=c(84,87,86,85,82,87,92,94,88,84.9,78,90,88,87,82,84,86,83,85.2,82),x2=c(61,55.5,57,57,50,50,66.5,65,60.5,49.5,49.5,61,59.5,58.4,53.5,54,60,58.8,54,56),x3=c(24.5,24,23,22.5,22,24,25,26,25,24,23,21,26,25.5,24,23,24,24,24,22),sign=0)
y=data$y*100
x=as.matrix(data[,colnames(data) %in% c("x1","x2","x3")])
n=nrow(x)

#サンプルデータ
data("AirPassengers")
Y=as.numeric(t(AirPassengers))[length(Y):1]
p=6
y=c()
x=array(0,dim=c(length(Y)-p,p))
n=nrow(x)
for(j in 1:nrow(x)){
val=Y[length(Y)-j+1]  
y=c(y,val)
vec=Y[(length(Y)-j):(length(Y)-j-p+1)]
x[j,]=vec  
}

#Newton Algorithm 

ep=0.001
C=10^(-3)
X=rep(1/nrow(x),nrow(x))
eta=10^(-7)
ite=2*10^2
lambda=1

for(l in 1:ite){
X_pre=X  
dX=(diag(x%*%t(x)))-apply((x*c(X))%*%t(x),2,sum)
X=X+eta*dX
X=abs(X)/sum(abs(X))
L=sum(diag(x%*%t(x))*X)-sum((x*c(X))%*%t(x*c(X)))
print(L)
r=diag(x%*%t(x))-2*apply((x*c(X))%*%t(x),2,sum)+sum((x*c(X))%*%t(x*c(X)))

}

#外れ値を除いたデータ
z=x[r<10^5,]



#RBFネットワーク p.151
#最急降下法、モーメント法
#計算時間がかかるため改良したい

data(iris)
X=iris[,1:4]
species=unique(iris$Species)
species_vector=iris$Species

Y=c()
averages=sample(1:100,length(species))
sds=sample(1:100,length(species))
for(j in 1:length(unique(species))){
Y=c(Y,abs(rnorm(sum(species_vector==species[j]),averages[j],sds[j])))  
}
p=length(Y)

#パラメータ
n=3
clusters=kmeans(X,n)$cluster
Cj=array(0,dim=c(n,ncol(X)))
rj=c()
w=rep(1,n)
lam=10^(0)
for(j in 1:n){
Cj[j,]=apply(X[clusters==j,],2,mean)
Xsub=X[clusters==j,]
rj=c(rj,sqrt(max(apply((t(Xsub)-apply(X[clusters==j,],2,mean))^2,2,sum))))
}

b=0.95
m1=0
m2=0

ite=10^4
eta1=10^(-5)
eta2=10^(-4)
eta3=10^(-3)

for(l in 1:ite){
H=c()
for(j in 1:n){
H=c(H,exp(-apply((t(X)-Cj[j,])^2,2,sum)/(rj[j]^2)))  
}
H=matrix(H,nrow=nrow(X))  
f=H%*%w

drj=c()
dCj=array(0,dim=dim(Cj))
for(j in 1:n){
drj=c(drj,-2*(w[j]/(rj[j]^3))*sum(apply((t(X)-Cj[j,])^2,2,sum)*exp(-apply((t(X)-Cj[j,])^2,2,sum)/(rj[j]^2))*(Y-f)))
dCj[j,]=-2*(w[j]/(rj[j]^2))*apply(t(t(X)-Cj[j,])*c(exp(-apply((t(X)-Cj[j,])^2,2,sum)/(rj[j]^2))*(Y-f)),2,sum)
}
m1=b*m1-eta1*dCj
m2=b*m2-eta2*drj
Cj=Cj+m1
drj=drj+m2


w=w*(1-eta3)+eta3*solve(t(H)%*%H+diag(lam,n))%*%t(H)%*%Y
cost=sum((Y-f)^2)
print(cost)
}

1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?