0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

機械学習 第三章 ロジスティック回帰モデル

Posted at

#####分類問題(クラス問題)
ある入力(数値)からクラスに分類する問題

#####分類で扱うデータ

  • 入力(各要素を説明変数または特徴量と呼ぶ)

m次元のベクトル(m次元の場合はスカラ)

  • 出力(目的変数)

0 or 1の値

  • タイタニックデータ、IRISのデータなど

#####シグモイド関数

  • 入力は実数、出力は必ず0~1の値
  • (クラス1に分類される)確率を表現
  • 単調増加関数
\sigma (x)= \frac{1}{1+\exp(-ax)}

キャプチャ.PNG

  • シグモイド関数の性質

シグモイド関数の微分はシグモイド関数で表せる。

  • シグモイド関数の出力をY=1になる確率に対応させる
P(Y=1|x)=\sigma (w_o+w_1x_1+...+w_mx_m)

データYは確率が0.5以上ならば1、未満なら0と予測

  • ベルヌーイ分布

数学において、確率pで1、確率1-pで0をとる、離散確率分布(例;コイン投げ)

  • 同時確率

あるデータが得られた時、それが同時に得られる確率
確率変数は独立であることを仮定すると、それぞれの確率の掛け算となる。

  • 尤度関数とは

データは固定し、パラメータを変化させる
尤度関数を最大化するようなパラメータを選ぶ推定方法を最尤度推定という

  • ロジスティック回帰モデルの最尤推定

キャプチャ.PNG

  • 尤度関数を最大とするパラメータを探す(推定)

対数をとると微分の計算が簡単

対数をとるのは桁落ちしないため

  • 勾配降下法
w(k+1)=w^k-\eta\frac{\partial E(w)}{\partial w}

  • 勾配降下法では、パラメータを更新するのにN個全てのデータに対する和を求める必要がある。

nが巨大になったときにデータをオンメモリに載せる容量が足りない、計算時間が莫大になるなどの問題がある
確率的勾配降下法を利用して解決

  • 確率的勾配降下法(SGD)
w(k+1)=w^k+\eta (y_i-p_i)x_i

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?