lod
SPARQL
wikidata

Wikidataを使った日本の政治家の出身大学ランキング

東京でLODのワークショップでSPARQLのハンズオンを行った翌日,Twitterで,



といったツィートを見かけた.

これって,ちょうどSPARQLのハンズオンでやった「Wikidataを使った大学の卒業生ランキング」の例を使ったら近いことが調べらのでは...と思ったので,試した結果を共有します.

Wikidataとは

Wikidataとは,Wikipediaと同じウィキメディア財団が運営している「誰でも編集可能なフリーの知識ベース」で,現在は,Wikipediaの各記事からも該当するデータへのリンクがされています(メニューの「ウィキデータ項目」というリンクから行けます).

この知識ベースは,https://query.wikidata.org/ で様々なクエリを実行できるサービスがあり,SPARQLというクエリ言語を用いた問い合わせが行えます.

Wikidataの解説は,こちらの記事をはじめ,Qiitaでもwikidata
で検索すると,様々な解説がされていますので,そちらをご参照ください.

ランキング用のクエリ

さて本題の「Wikidataを使った日本の政治家の出身大学ランキング」は,こちらとなります.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wd: <http://www.wikidata.org/entity/>

select ?univ ?univl (count(?s) As ?c) where{
?univ wdt:P31 wd:Q3918.
?s  wdt:P27  wd:Q17;
    wdt:P106 wd:Q82955;
    wdt:P69  ?univ.
OPTIONAL{
    ?s  rdfs:label  ?name.
    FILTER(lang(?name)="ja")
    ?univ rdfs:label ?univl .
    FILTER (lang(?univl) = "ja") .
  }
}
GROUP BY ?univ ?univl
ORDER BY DESC(?c)
LIMIT 100

実行結果はこちらから確認できます.
これをWikidataのクエリサービスが用意しているグラフ可視化機能でみると下記のようになります.
result1.png
予想通り,東京大学の出身者が多数ですね.

この結果から,上位10大学を抜き出すとこんな感じ.

大学 その大学出身の日本の政治家の数
東京大学 687
早稲田大学 331
慶應義塾大学 186
京都大学 159
中央大学 150
大阪大学 136
日本大学 115
明治大学 106
法政大学 55
北海道大学 42

個人的には意外だったのですが,うちの母校もTOP10に入ってました.

なお,このクエリに少し手を加えてやると,いろいろと調べることができます.
例えば,下記のようにwdt:P39 wd:Q274948;の一文を加えてやると,「Wikidataを使った日本の総理大臣の出身大学ランキング」となります.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wd: <http://www.wikidata.org/entity/>

select ?univ ?univl (count(?s) As ?c) where{
?univ wdt:P31 wd:Q3918.
?s  wdt:P27  wd:Q17;
    wdt:P106 wd:Q82955;
    wdt:P39  wd:Q274948;
    wdt:P69  ?univ.
OPTIONAL{
    ?s  rdfs:label  ?name.
    FILTER(lang(?name)="ja")
    ?univ rdfs:label ?univl .
    FILTER (lang(?univl) = "ja") .
  }
}
GROUP BY ?univ ?univl
ORDER BY DESC(?c)
LIMIT 100

結果は下記の通り.
(Wikidataのサイトで見たい場合はこちら

大学 その大学出身の日本の総理大臣の数
東京大学 17
早稲田大学 6
慶應義塾大学 3
京都大学 3
明治大学 2
大阪大学 1
同志社大学 1
学習院大学 1
中央大学 1
神戸大学 1
上智大学 1
東京工業大学 1
東京海洋大学 1
一橋大学 1
成城大学 1
成蹊大学 1
埼玉大学 1

4位までは変わりませんが,それ如何1名の団子状態.

なお,これらのクエリを作るのに要した時間は,合わせて15分程度.(最初のクエリは10分強で書きました)
このように,いろいろお手軽に調べることができることが,面白いところ.

注意点

上記のランキングですが,あくまでもWikidataに登録されているデータを元にしている点に,ご注意ください.
Wikidataは,Wikipediaと同じようにコミュニティベースで構築されていますので,必ずしも正しい情報が入っているとは限りません

また,今回作成したクエリでは,1人の人が複数の大学で教育を受けていた場合,その分は重複してカウントされてしまいます.
この点は,クエリをもう少し工夫すれば何とかなるかもしれません(最終学歴でカウントするなど)が,データがどこまで入っているかにも依ります.

ただ,Wikidataでは,Wikipediaの記事になっているような項目については,相当数のデータがカバーされていますので,何気なく感じたことを,データに基づいて簡単に調べてみるときにはとても便利です.

詳しいクエリの書き方

この記事では,詳しいクエリの書き方の説明は省略していますが,ご関心のある方は,
第1回Linked Open Data (LOD) 活用ワークショップの資料置き場
https://github.com/KnowledgeGraphJapan/LODws1st
に,ワークショップで解説した資料やサンプルがありますのでご覧ください.

また,Wikipediaと同じようなクエリが使える知識ベースであるDBpediaを使ったランクキングのクエリについては,こちらの記事で解説していますので,併せてご覧ください.

なお当然ながら,プログラムからのアクセスも可のです(プログラムからはhttps://query.wikidata.org/sparql というアドレスでアクセスします)ので,ちょっと工夫すると,いろんなことに使えると思います,