0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

TeX記法 数学Ⅱ

Posted at

概要

数学Ⅱで使用する公式のTex記法を下記に示す。

TeX記法 数学Ⅱ

微分と積分

微分係数
\lim_{h \to 0}\frac{f(a + h) - f(a)}{h} = f'(a)

\lim_{h \to 0}\frac{f(a + h) - f(a)}{h} = f'(a)

微分
nは自然数、cは定数とする
(x^n)' = n x^{n-1}
(c)' = 0
\{c f(x)\}' = cf'(x)
\{c f(x) + g(x)\}' = cf'(x) + g'(x)

(x^n)' = n x^{n-1} \\
(c)' = 0 \\
\{c f(x)\}' = cf'(x) \\
\{c f(x) + g(x)\}' = cf'(x) + g'(x)

接線の方程式
y = f(x)上の点A(a, f(a))を通る接線の式は
y - f(a) = f'(a)(x - a)

y - f(a) = f'(a)(x - a)

法線の方程式
y = f(x)上の点A(a, f(a))を通る法線の式は
y = -\frac{1}{f'(a)}(x - a) + f(a)

y = -\frac{1}{f'(a)}(x - a) + f(a)

不定積分
\int F'(x)dx = F(x) + C
\int x^{n}dx = \frac{x^{n + 1}}{n + 1} + C

\int F'(x)dx = F(x) + C \\
\int x^{n}dx = \frac{x^{n + 1}}{n + 1} + C

定積分
\int_{a}^{b} F'(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)
\int_{a}^{b} k f(x)dx = k\int_{a}^{b} f(x)dx
\int_{a}^{b} \{f(x) + g(x)\}dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx
\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx

\int_{a}^{b} F'(x)dx = [F(x)]_{a}^{b} = F(b) - F(a) \\
\int_{a}^{b} k f(x)dx = k\int_{a}^{b} f(x)dx \\
\int_{a}^{b} \{f(x) + g(x)\}dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx\\
\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx

1/6の公式
\int_{\alpha}^{\beta} (x - \alpha)(x - \beta)dx = -\frac{1}{6}(\beta - \alpha)^3

\int_{\alpha}^{\beta} (x - \alpha)(x - \beta)dx = -\frac{1}{6}(\beta - \alpha)^3
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?