LoginSignup
1
2

More than 3 years have passed since last update.

TeX記法 数学I

Last updated at Posted at 2020-10-28

概要

数学Iで使用する公式のTex記法を下記に示す。

TeX記法 数学I

展開
(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd

(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd

3次式の展開
(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3
(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3

(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \\
(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3

3次式因数分解
a^3 + b^3 = (a + b)(a^2 - ab + b^2)
a^3 - b^3 = (a - b)(a^2 + ab + b^2)

a^3 + b^3 = (a + b)(a^2 - ab + b^2) \\
a^3 - b^3 = (a - b)(a^2 + ab + b^2)

有理化
\frac{b}{\sqrt{a}} = \frac{b\sqrt{a}}{a}

\frac{b}{\sqrt{a}} = \frac{b\sqrt{a}}{a}

二重根号
\sqrt{a + b \pm 2\sqrt{ab}} = \sqrt{a} \pm \sqrt{b}

\sqrt{a + b \pm 2\sqrt{ab}} = \sqrt{a} \pm \sqrt{b}

解の公式
x = \frac{-b \pm\sqrt{b^2 - 4ac}}{2a}

x = \frac{-b \pm\sqrt{b^2 - 4ac}}{2a}

判別式
ax^2 + bx + c = 0の判別式D = b^2 - 4ac

ax^2 + bx + c = 0 \\
D = b^2 - 4ac \\
D > 0 の時異なる2つの実数解 \\
D = 0 の時重解 \\
D < 0 の時実数解なし

三角比の相互関係
\sin^2\theta + \cos^2\theta = 1
\tan\theta = \frac{\sin\theta}{\cos\theta}
1 + \tan^2\theta = \frac{1}{\cos^2\theta}

\sin^2\theta + \cos^2\theta = 1 \\
\tan\theta = \frac{\sin\theta}{\cos\theta} \\
1 + \tan^2\theta = \frac{1}{\cos^2\theta}

正弦定理
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R

\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}  = 2R

余弦定理
a^2 = b^2 + c^2 - 2bc\cos A

a^2 = b^2 + c^2 - 2bc\cos A

三角形の面積
S = \frac{1}{2} ab\sin C

S = \frac{1}{2} ab\sin C

ヘロンの公式
S = \sqrt{s(s - a)(s - b)(s - c)}

S = \sqrt{s(s - a)(s - b)(s - c)}

内接円の半径と面積
S = \frac{1}{2}(a + b + c)r

S = \frac{1}{2}(a + b + c)r

平均値
\overline{x} = \frac{x_1 + x_2 + \cdots + x_n}{n}

\overline{x} = \frac{x_1 + x_2 + \cdots + x_n}{n}

分散
s^2 = \frac{1}{n}\{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 \cdots + (x_n - \overline{x})^2\}

s^2 = \frac{1}{n}\{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 \cdots + (x_n - \overline{x})^2\}

標準偏差
s = \sqrt{{分散}} = \sqrt{\frac{1}{n}\{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 \cdots + (x_n - \overline{x})^2}\}

s = \sqrt{{分散}} = \sqrt{\frac{1}{n}\{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 \cdots + (x_n - \overline{x})^2}\}

共分散
s_{xy} = \frac{1}{n}\{(x_1 - \overline{x})(y_1 - \overline{y}) + (x_2 - \overline{x})(y_2 - \overline{y}) \cdots + (x_n - \overline{x})(y_n - \overline{y})\}

s_{xy} = \frac{1}{n}\{(x_1 - \overline{x})(y_1 - \overline{y}) + (x_2 - \overline{x})(y_2 - \overline{y}) \cdots + (x_n - \overline{x})(y_n - \overline{y})\}
1
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
2