0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

PythonによるGlobally Coupled Mapの相図を描画する

Last updated at Posted at 2024-04-05

Globally coupled map に関する特徴や数学的背景に関しては以下を参照

Step0. 使用するパッケージ

import numpy as np
import matplotlib.pyplot as plt
import random

Step1. 写像を定義

写像を定義
def f(x, alpha):
  y = 1 - alpha*x*x
  return y

def coupled_f(x_list, alpha, e):
  total = 0
  y_list = []
  num = len(x_list)

  for n in range(num):
    total += f(x_list[n], alpha)
  for n in range(num):
    y_list.append((1 - e) * f(x_list[n], alpha) + (e / num) * total)
  return y_list

Step2. 時系列の生成

時系列の生成
def series(alpha, e, initial, length, trans_period):
  num_coupled = len(initial)  # 結合数
  x_list = [n + trans_period for n in range(length)]
  y_list = []

  for n in range(num_coupled):
    y_list.append([initial[n]])
  length -= 1
  for n1 in range(length + trans_period):
    pre_y_list = []
    for n2 in range(len(initial)):
      pre_y_list.append(y_list[n2][n1])

    after_y_list = coupled_f(pre_y_list, alpha, e)
    for n2 in range(len(initial)):
      y_list[n2].append(after_y_list[n2])

  for n1 in range(num_coupled):
    y_list[n1] = y_list[n1][trans_period:]
  return x_list, y_list

Step3. クラスター数の判定

クラスター数の判定
def count_num_cluster(y_list):
  couple = np.size(np.array(y_list).T[-1,:])
  num_cluster = 0
  cluster_list = []
  for n in range(couple):
    check = 0
    for index, cluster in enumerate(cluster_list):
      if abs(cluster - np.array(y_list).T[-1,n]) < 10**(-5):
        check += 1
    if check == 0:
      cluster_list.append(np.array(y_list).T[-1,n])
      num_cluster += 1

  num_element = np.zeros(num_cluster, dtype=int)
  for n in range(couple):
    for index, cluster in enumerate(cluster_list):
      if abs(cluster - np.array(y_list).T[-1,n]) < 10**(-5):
        num_element[index] += 1

  return num_cluster

Step4. プロットのために整理する

プロット用に整列させる
def arrange_list(alpha_range, e_range):
  alpha_range_ar = []
  e_range_ar     = []

  for e in e_range:
    for alpha in alpha_range:
      alpha_range_ar.append(alpha)
      e_range_ar.append(e)
  return alpha_range_ar, e_range_ar

# プロットのためのデータを取得
def cal_plot(e_range, alpha_range, num_mean, couple, length, trans_period, sample_range):
  plot_list = []
  for n in range(num_mean):
    print("n :", n)
    plot_list.append([])
    for e in e_range:
      for alpha in alpha_range:
        initial = random.choices([random.random() for _ in range(sample_range)], k = couple)
        x_list, y_list = series(alpha, e, initial, length, trans_period)
        num_cluster = count_num_cluster(y_list)
        if num_cluster == 1:
          plot_list[n].append(0)
        elif num_cluster < 10:
          plot_list[n].append(10)
        elif num_cluster < couple:
          plot_list[n].append(20)
        elif num_cluster == couple:
          plot_list[n].append(30)
  plot_list = np.sum(np.array(plot_list), axis=0)
  plot_list = [n / num_mean for n in plot_list]
  return plot_list

Step5. すべてのプログラムを実行しプロット

e_range = np.linspace(0.0, 0.6, 61)
alpha_range = np.linspace(1.4, 2.0, 61)

couple = 50
length = 10
trans_period = 500
sample_range = 10**4

num_mean = 10
plot_list = cal_plot(e_range, alpha_range, num_mean, couple, length, trans_period, sample_range)
alpha_range, e_range = arrange_list(alpha_range, e_range)
marker_size = 13
plt.figure(figsize=(5, 4))
plt.scatter(alpha_range, e_range, c=plot_list, cmap='viridis', s=marker_size, marker="s")
plt.xlabel(r'$\alpha$')
plt.ylabel(r'$\varepsilon$')
plt.show()

実行結果の例

image.png

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?