0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

クリックした座標近傍の複素関数の値をプロットする - Python matplotlib

Last updated at Posted at 2023-02-01

の続き

キャプチャ

image.png

操作方法

  • 画面左端のグラフ上で座標を左クリックで選択
  • 右クリックまたはウィンドウを閉じる操作で終了
  • 無操作タイムアウトでの終了は86400秒(丸一日)

左端のグラフから順に

  • $s$
  • $\xi(s) =\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s)$
  • $|\xi(s))|$ (横軸は$Im(s)$)
  • $|\xi(s))|$ (横軸は$Re(s)$)

ソースコード

import matplotlib.pyplot as plt
from matplotlib import _pylab_helpers
# import cmath
import numpy as np
import mpmath
mpmath.mp.dps = 12

def zeta_relist_im_abs(re_list,im):
    z_re = np.zeros(len(re_list))
    z_im = np.zeros(len(re_list))
    z_abs = np.zeros(len(re_list))
    for i in range(len(re_list)):
        s = re_list[i] + im*1j
        tmp = mpmath.zeta(s)*mpmath.gamma(0.5*s)*mpmath.power(mpmath.pi,-0.5*s)
        z_re[i] = tmp.real
        z_im[i] = tmp.imag
        z_abs[i] = abs(tmp)
        # z_arg[i] = cmath.phase(tmp)
    return z_re,z_im,z_abs

def zeta_re_imlist_abs(re,im_list):
    z_re = np.zeros(len(im_list))
    z_im = np.zeros(len(im_list))
    z_abs = np.zeros(len(im_list))
    for i in range(len(im_list)):
        s = re + im_list[i]*1j
        tmp = mpmath.zeta(s)*mpmath.gamma(0.5*s)*mpmath.power(mpmath.pi,-0.5*s)
        z_re[i] = tmp.real
        z_im[i] = tmp.imag
        z_abs[i] = abs(tmp)
        # z_arg[i] = cmath.phase(tmp)
    return z_re,z_im,z_abs


def main():
    RE_N=11
    IM_N=51
    # RE_AMP=0.1
    IM_AMP=1
    
    fig,axes = plt.subplots(1, 4, figsize=(13,5), gridspec_kw= {'width_ratios': [1, 3, 2, 2]})
    axes[0].set_xticks([0.5,0.75,1])
    axes[0].set_xlim((0.5,1))
    axes[0].set_yticks([0,14,14.5,20])
    axes[0].set_ylim((0,20))
    axes[0].grid()
    axes[1].grid()
    axes[2].grid()
    axes[3].grid()

    # ハンドル取得のため一度plot
    lines00, = axes[0].plot([0,1], [0,0],"r") # s  Re part sweep
    lines01, = axes[0].plot([0,1], [0,0],"b") # s  Im part sweep s_re
    lines03, = axes[0].plot([0,1], [0,0],"g") # s  Im part sweep s_re max
    lines10, = axes[1].plot([0,1], [0,0],"r") # zeta_xi(s) Re part sweep
    lines11, = axes[1].plot([0,1], [0,0],"b") # zeta_xi(s) Im part sweep
    lines13, = axes[1].plot([0,1], [0,0],"g") # zeta_xi(s) Im part sweep s_re max
    lines21, = axes[2].plot([0,1], [0,0],"b") # abs(zeta(s)) Im part sweep
    lines23, = axes[2].plot([0,1], [0,0],"g") # abs(zeta(s)) Im part sweep s_re max
    # lines24, = axes[2].plot([0,1], [0,0],"y") # diff of abs(zeta(s))
    lines3,  = axes[3].plot([0,1], [0,0],"r") # abs(zeta(s)) Re part sweep 

    while True:
        manager = _pylab_helpers.Gcf.get_active()
        if manager is None:
            print('closed')
            break

        points = plt.ginput(n=1, timeout=86400, mouse_add=1, mouse_pop=2, mouse_stop=3)
        # a = plt.ginput(n=-1, mouse_add=1, mouse_pop=3, mouse_stop=2)
        # n=-1でインプットが終わるまで座標を取得
        # mouse_addで座標を取得(左クリック)
        # mouse_popでUndo(ミドルクリック)
        # mouse_stopでインプットを終了する(右クリック)

        if len(points)==1:
            re = 0.5
            re_max,im = points[0]
            print(re_max, im)
            
            re_list = np.zeros(RE_N)
            im_list_dummy = np.zeros(RE_N)

            re_list_dummy  = np.zeros(IM_N)
            re_list_dummy3 = np.zeros(IM_N)
            im_list = np.zeros(IM_N)

            for i in range(RE_N):
                re_list[i] = re + (re_max-re)*i/(RE_N-1)
                im_list_dummy[i] = im

            for i in range(IM_N):
                re_list_dummy[i]  = re
                re_list_dummy3[i] = re_list[-1]
                im_list[i] = im + IM_AMP*(i-(IM_N-1)/2)/((IM_N-1)/2)

            axes[0].set_ylim(None)
            lines00.set_data(re_list       , im_list_dummy)
            lines01.set_data(re_list_dummy , im_list      )
            lines03.set_data(re_list_dummy3, im_list      )
            
            # Re sweep
            z_re1,z_im1,z_absr = zeta_relist_im_abs(re_list, im)

            # Im sweep
            z_re2,z_im2,z_abs2 = zeta_re_imlist_abs(re, im_list)
            z_re4,z_im4,z_abs4 = zeta_re_imlist_abs(re_list[-1], im_list) # [-1] means last element of the list

            lines10.set_data(z_re1, z_im1)
            lines11.set_data(z_re2, z_im2)
            lines13.set_data(z_re4, z_im4)

            # z_abs_diff = z_abs4-z_abs2
            lines21.set_data(im_list, z_abs2)
            lines23.set_data(im_list, z_abs4)
            #lines24.set_data(im_list, z_abs_diff)
            
            #tmp_abs_max1 = max(abs(z_abs_diff.min()),abs(z_abs_diff.max()))
            tmp_abs_max2 = abs(z_abs2.max())
            tmp_abs_max1 = abs(z_abs4.max())
            tmp_abs_max  = max(tmp_abs_max1,tmp_abs_max2)
            #tmp_min      = min(0,z_abs_diff.min())
            axes[2].set_xlim(im_list[0],im_list[-1])
            #axes[2].set_ylim(tmp_min,tmp_abs_max)
            axes[2].set_ylim(0,tmp_abs_max)

            lines3.set_data(re_list, z_absr)
            axes[3].set_xlim(re_list[0],re_list[-1])
            tmp_abs_max = abs(z_absr.max())
            tmp_abs_min = abs(z_absr.min())
            axes[3].set_ylim(tmp_abs_min,tmp_abs_max)

            tmp_abs_max1 = max(abs(z_re1.min()),abs(z_re1.max()),abs(z_re2.min()),abs(z_re2.max()),abs(z_re4.min()),abs(z_re4.max()))
            tmp_abs_max2 = max(abs(z_im1.min()),abs(z_im1.max()),abs(z_im2.min()),abs(z_im2.max()),abs(z_im4.min()),abs(z_im4.max()))
            
            axes[1].set_xlim((-tmp_abs_max1, tmp_abs_max1))
            axes[1].set_ylim((-tmp_abs_max2, tmp_abs_max2))
            #tmp_abs_max  = max(tmp_abs_max1,tmp_abs_max2)
            #axes[1].set_xlim((-tmp_abs_max, tmp_abs_max))
            #axes[1].set_ylim((-tmp_abs_max, tmp_abs_max))
        else:
            print('quit by right click')
            break

        # plt.savefig('fig_test.png')
        # plt.show()
        # 次の描画(≒操作受付)までの待ち時間(秒)
        plt.pause(0.05)


if __name__ == '__main__':
    main()

参考記事

matplotlibで座標を取得

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?