0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

Hilbert曲線のインデックスと配置座標

Last updated at Posted at 2025-03-25

こんにちは。
二次元Hilbert曲線のインデックスと配置座標との関係を求めました。

$ ./hilbert.py 1
 0 1
 3 2
$ ./hilbert.py 2
  0  3  4  5
  1  2  7  6
 14 13  8  9
 15 12 11 10
$ ./hilbert.py 3
  0  1 14 15 16 19 20 21
  3  2 13 12 17 18 23 22
  4  7  8 11 30 29 24 25
  5  6  9 10 31 28 27 26
 58 57 54 53 32 35 36 37
 59 56 55 52 33 34 39 38
 60 61 50 51 46 45 40 41
 63 62 49 48 47 44 43 42

Source code

hilbert.py
#!/usr/bin/env python3

def hilbert(n):
    result = []
    range_j = [2**i for i in reversed(range(n))]
    for i in range(4**n):
        U = [[0, 0], [0, 1], [1, 1], [1, 0]]
        x, y = 0, 0
        for j in range_j:
            k = i // (j*j) % 4
            if k == 0:
                U[1], U[3] = U[3], U[1]
            elif k == 3:
                U[0], U[2] = U[2], U[0]
            x += U[k][0] * j
            y += U[k][1] * j
        result.append((x, y))
    return result

def hilbert_lookup(n):
    dict_ = dict(zip(hilbert(n),range(4**n)))
    return [[dict_[(i, j)] for j in range(2**n)] for i in range(2**n)]

import sys, math
n = 2 if len(sys.argv) == 1 else int(sys.argv[1])

n_digit = math.floor(math.log(4**n-1, 10)) + 1
for w in hilbert_lookup(n):
    for i in w:
        print(str(i).rjust(n_digit + 1, ' '), end="")
    print()
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?