search
LoginSignup
3

More than 1 year has passed since last update.

posted at

updated at

“私”を歌うのが中島さんで“あなた”を歌うのがユーミン なのか分析してみた

元ネタ

記事の中では、以下のように書かれています。

“私”を歌うのが中島さんで“あなた”を歌うのがユーミン。
“夜”“泣く”“嘘”を歌うのが中島さんで、
“朝”“愛”“好き”を歌うのがユーミンなんです。

確かに、そんな気がします。
あまり詳しくない私にはそうおもいます。
元記事のダブルクォーテーションの気持ち悪さ以外は、すんなりですね。

せやろか?

でも少しキャッチーすぎる気がします。
本当にそうなのか、少し分析して、自分なりのコピーをつけてみます。

せっかくなので、普段使わない、ライブラリのお勉強も兼ねてやってみます。

どう進めるか

  • スクレイピングして
  • 形態素解析して
  • いい感じに出力する

これなら、IT業界の隅っこで体育座りをしている、私にもできるかもしれません。

いい感じのライブラリを作ってくれる人に感謝です。

スクレイピングして

スクレイピングはいつもお世話になっている、beautiful soupです。
さくっと歌詞をスクレイピングしますが、少し気になることがあります。
著作権です。

歌詞の著作権について

ふむふむ、データ分析に使うぐらいなら問題なそうです。
ただ、歌詞を垂れ流すと問題です。
最近gitに挙げることが多いですが、うっかりscraping後の元データを上げたりすると、
↓にエントリーすることになりそうなので気を付けます。
https://qiita.com/advent-calendar/2020/yarakashi-production

形態素解析して

今までMeCab使うことが多かったのですが、ここぞとばかりに、普段からストックして気になっていた、
GINZAを早速つかってみます。
日本語NLPライブラリGiNZAのすゝめ

さっそく横道にそれて 依存構造解析・可視化をしてみます。

なぜなら仕事でほとんど使わなからです、こういうの憧れます・・・・・・
ワイ「ユーザー辞書、手で作るの苦しいです。サンタマリア」

 ある晩象は象小屋で、三把の藁をたべながら、十日の月を仰あおぎ見て、
「苦しいです。サンタマリア。」と云ったということだ。
出典:青空文庫 オツベルと象 宮沢賢治

象の渾身の一言もこんな感じで可視化できます。

displacy.PNG

なにこれ?3行っすか?

nlp = spacy.load('ja_ginza')
doc = nlp('ある晩象は象小屋で、三把の藁をたべながら、十日の月を仰あおぎ見て、「苦しいです。サンタマリア。」と云ったということだ。')
displacy.serve(doc, style='dep')

形態素解析に戻る

サラリーマンとしては象に激しく同情しますが、涙をぬぐってGINZAでの作業を進めます。
形態素解析でやりたいこと、品詞と基本型に戻すところです。
そもそも元ネタは歌詞なので、名詞だけでもいいかと思ってやってみましたが、あまりに寂しかったので
名詞、形容詞、動詞で、取得したワードは基本型に戻します。

def make_words_list(text: str) -> list:
    rs = []
    doc = nlp(text)
    for sent in doc.sents:
        for token in sent:
            tag = token.tag_.split('-')[0]
            if tag in ['名詞','形容詞','動詞']:
#            if tag in ['名詞']:
                rs.append(token.lemma_)
    return rs

上記のようにspaCyも素晴らしいですが、日本語周りを整備してくれるGINZAの人たちに感謝です。

DataFrameの状態

ポイントはPandasのデータフレームというところです。
この後 nlplot を使っていい感じの可視化をしますがDataSeries直渡しができるので、非常に気持ちがいいです。

割愛してしまいましたが、titleとlyricsはscrapingで取得している状態です。

title lyrics words
やさしさに... いいかんじの詩 [単語1,単語2,単語3]
ひこうき... いいかんじの詩 [単語4,単語5,単語6]

いい感じに出力する

可視化について考えてみる

今回はnlplotを使ってみます。
これも前から気になっていたのですが、いままで使う機会もなかったので、これを機にやってみます。

  1. N-gram bar chart
  2. N-gram tree Map
  3. wordcloud
  4. co-occurrence networks 共起ネットワーク
  5. sunburst chart

特に3-5はいままでやったことがなく、気になります。

N-gram bar chart

おぉー、いいですね!
きれいにでてます。pyplotでブラウザに表示されるので、インタラクティブ性もあります。

newplot.png

N-gram tree Map

bar chartよりも派手ですね。細かい数値というより、ざっくりした雰囲気を見たいときはこれがいいですね。
プレゼンの閑話休題的や章表紙的な使い方がいいかもしれません

newplot (1).png

newplot (2).png

wordcloud

ワードクラウドにするとこんな感じですね
ワードクラウドってある程度、長い単語がないと見栄えがしないんですね。

松任谷由美
Figure 2020-12-28 161908.png

中島みゆき
Figure 2020-12-28 161847.png

co-occurrence networks 共起ネットワーク

こちらもpyplotでブラウザに表示されるので、インタラクティブ性もあります。
今回のようなワード間の関連性をみるなら、共起ネットワークは面白いですね。
なによりも、簡単に作れるのが、うれしいですね。

松任谷由美
newplot (3).png

中島みゆき
newplot (4).png

sunburst chart

これもすごいですね、かなりきれいに出力されています。
見方もそうなんですが、もう少し強いメッセージ性があれば、いいんですが、私の手落ちですね。
ストップワード入れればよかった。。。

newplot (5).png

newplot (6).png

私がコピーをつけるとしたら

「ユーミンは時間を歌い、中島みゆきは場所を歌う。」 です。
分析してみて驚いたのですが、上位の単語は結構同じですよね。

っということは、件数が少ないものの方が、特徴がでている可能性がありますので、少なめの件数のものを見てみます。
ユーミンは動詞が多く、中島みゆきは名詞が多い傾向がありそうです。
そして中島みゆきは、「空」や「海」などの自然に関するワード、ユーミンは「二人」や「ユー」などの人称に関するワードが多い気がします

分析者について

年齢はユーミン世代より少し下で、「みちょぱ」と「ゆきぽよ」の区別がつかない年齢

松任谷由実さんについて
・埠頭を渡る風
・リフレインが叫んでる
が好きで
埠頭を渡る風は基準ピッチより高めの450Hzでチューニングされているという話もあります。
あのすっきりした感じは自然言語の分析ではなく、音声系の分析をかければなにかでるのかもしれませんね。

中島みゆきさんについて
・ファイト!
・浅い眠り
が好きです。たくさんのアーティスに楽曲の提供もしておられます。

github

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
What you can do with signing up
3