0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

DeepChemのGraphPoolLayerをPyTorchのカスタムレイヤーで実装する

Last updated at Posted at 2020-11-11

#はじめに
昨日のGraphConvLayerに続いて、DeepChem の GraphPoolLayer を Pytorch のカスタムレイヤーで実装してみた。

#環境

  • DeepChem 2.3
  • PyTorch 1.7.0

#ソース
DeepChemのGraphPoolLayerをPyTorchに移植し、前回のGraphConvLayerの出力結果を、作成したGraphPoolLayerに食わせてみた。

import torch
from torch.utils import data
from deepchem.feat.graph_features import ConvMolFeaturizer
from deepchem.feat.mol_graphs import ConvMol
import torch.nn as nn
import numpy as np


class GraphConv(nn.Module):

    def __init__(self,
               in_channel,
               out_channel,
               min_deg=0,
               max_deg=10,
               activation=lambda x: x
               ):

        super().__init__()
        self.in_channel = in_channel
        self.out_channel = out_channel
        self.min_degree = min_deg
        self.max_degree = max_deg

        num_deg = 2 * self.max_degree + (1 - self.min_degree)

        self.W_list = [
            nn.Parameter(torch.Tensor(
                np.random.normal(size=(in_channel, out_channel))).double())
            for k in range(num_deg)]

        self.b_list = [
            nn.Parameter(torch.Tensor(np.zeros(out_channel)).double()) for k in range(num_deg)]

    def forward(self, atom_features, deg_slice, deg_adj_lists):

        #print("deg_adj_list")
        #print(deg_adj_lists)

        W = iter(self.W_list)
        b = iter(self.b_list)

        # Sum all neighbors using adjacency matrix
        deg_summed = self.sum_neigh(atom_features, deg_adj_lists)

        # Get collection of modified atom features
        new_rel_atoms_collection = (self.max_degree + 1 - self.min_degree) * [None]

        for deg in range(1, self.max_degree + 1):
            # Obtain relevant atoms for this degree
            rel_atoms = deg_summed[deg - 1]

            # Get self atoms
            begin = deg_slice[deg - self.min_degree, 0]
            size = deg_slice[deg - self.min_degree, 1]

            self_atoms = torch.narrow(atom_features, 0, int(begin), int(size))

            # Apply hidden affine to relevant atoms and append
            rel_out = torch.matmul(rel_atoms, next(W)) + next(b)
            self_out = torch.matmul(self_atoms, next(W)) + next(b)

            out = rel_out + self_out
            new_rel_atoms_collection[deg - self.min_degree] = out

        # Determine the min_deg=0 case
        if self.min_degree == 0:
            deg = 0

            begin = deg_slice[deg - self.min_degree, 0]
            size = deg_slice[deg - self.min_degree, 1]
            self_atoms = torch.narrow(atom_features, 0, int(begin), int(size))

            # Only use the self layer
            out = torch.matmul(self_atoms, next(W)) + next(b)

            new_rel_atoms_collection[deg - self.min_degree] = out

        # Combine all atoms back into the list
        #print(new_rel_atoms_collection)
        atom_features = torch.cat(new_rel_atoms_collection, 0)

        return atom_features


    def sum_neigh(self, atoms, deg_adj_lists):
        """Store the summed atoms by degree"""
        deg_summed = self.max_degree * [None]

        for deg in range(1, self.max_degree + 1):
            index = torch.tensor(deg_adj_lists[deg - 1], dtype=torch.int64)
            gathered_atoms = atoms[index]

            # Sum along neighbors as well as self, and store
            summed_atoms = torch.sum(gathered_atoms, 1)
            deg_summed[deg - 1] = summed_atoms

        return deg_summed


class GraphPool(nn.Module):

    def __init__(self, min_degree=0, max_degree=10):
        super().__init__()
        self.min_degree = min_degree
        self.max_degree = max_degree


    def forward(self, atom_features, deg_slice, deg_adj_lists):

        # Perform the mol gather
        deg_maxed = (self.max_degree + 1 - self.min_degree) * [None]

        # Tensorflow correctly processes empty lists when using concat
        for deg in range(1, self.max_degree + 1):
            # Get self atoms
            begin = deg_slice[deg - self.min_degree, 0]
            size = deg_slice[deg - self.min_degree, 1]
            self_atoms = torch.narrow(atom_features, 0, int(begin), int(size))

            # Expand dims
            self_atoms = torch.unsqueeze(self_atoms, 1)

            # always deg-1 for deg_adj_lists
            index = torch.tensor(deg_adj_lists[deg - 1], dtype=torch.int64)

            gathered_atoms = atom_features[index]
            gathered_atoms = torch.cat([self_atoms, gathered_atoms], 1)

            if gathered_atoms.shape[0] > 0:
                maxed_atoms = torch.max(gathered_atoms, 1)[0]
            else:
                maxed_atoms = torch.Tensor([])

            deg_maxed[deg - self.min_degree] = maxed_atoms

        if self.min_degree == 0:
            begin = deg_slice[0, 0]
            size = deg_slice[0, 1]
            self_atoms = torch.narrow(atom_features, 0, int(begin), int(size))
            deg_maxed[0] = self_atoms

        return torch.cat(deg_maxed, 0)


class GCNDataset(data.Dataset):

    def __init__(self, smiles_list, label_list):
        self.smiles_list = smiles_list
        self.label_list = label_list

    def __len__(self):
        return len(self.smiles_list)

    def __getitem__(self, index):
        return self.smiles_list[index], self.label_list[index]


def gcn_collate_fn(batch):
    from rdkit import Chem
    cmf = ConvMolFeaturizer()

    mols = []
    labels = []

    for sample, label in batch:
        mols.append(Chem.MolFromSmiles(sample))
        labels.append(torch.tensor(label))

    conv_mols = cmf.featurize(mols)
    multiConvMol = ConvMol.agglomerate_mols(conv_mols)

    atom_feature = torch.tensor(multiConvMol.get_atom_features(), dtype=torch.float64)
    deg_slice = torch.tensor(multiConvMol.deg_slice, dtype=torch.float64)
    membership = torch.tensor(multiConvMol.membership, dtype=torch.float64)
    deg_adj_lists = []

    for i in range(1, len(multiConvMol.get_deg_adjacency_lists())):
        deg_adj_lists.append(multiConvMol.get_deg_adjacency_lists()[i])

    return atom_feature, deg_slice, membership, deg_adj_lists,  labels


def main():
    dataset = GCNDataset(["CCC", "CCCC", "CCCCC"], [1, 0, 1])
    dataloader = data.DataLoader(dataset, batch_size=3, shuffle=False, collate_fn =gcn_collate_fn)

    gc = GraphConv(75, 20)
    gp = GraphPool()
    for atom_feature, deg_slice, membership, deg_adj_lists, labels in dataloader:
        print("atom_feature")
        print(atom_feature)
        print("deg_slice")
        print(deg_slice)
        print("membership")
        print(membership)
        print("result")
        gc_out = gc(atom_feature, deg_slice, deg_adj_lists)
        gp_out = gp(gc_out, deg_slice, deg_adj_lists)
        print(gp_out)

if __name__ == "__main__":
    main()

###結果
はい、どん。
とりあえず、結果の形状は、原子数 x 20次元であり、GraphConvLayerの出力した次元を維持している ためあってるようだ。
相変わらずこのホワイトボックス感がいいね(前回とコメントが全く同じで手抜き)。
しかし TensorFlowと微妙に演算が違っていて、ちょいちょい調べるのに手間はかかる。

tensor([[ 1.8113e+00,  1.1862e+00,  1.3068e+00,  1.8266e+00,  6.0706e-03,
          7.2303e+00, -8.7022e-01,  1.1336e+00, -5.1411e+00, -3.3319e-02,
          1.8048e+00,  4.7143e+00,  3.8385e+00,  1.7524e+00,  5.2120e+00,
          2.8675e+00,  4.8746e+00, -2.5079e+00,  8.1260e+00,  7.8020e+00],
        [ 1.8113e+00,  1.1862e+00,  1.3068e+00,  1.8266e+00,  6.0706e-03,
          7.2303e+00, -8.7022e-01,  1.1336e+00, -5.1411e+00, -3.3319e-02,
          1.8048e+00,  4.7143e+00,  3.8385e+00,  1.7524e+00,  5.2120e+00,
          2.8675e+00,  4.8746e+00, -2.5079e+00,  8.1260e+00,  7.8020e+00],
        [ 3.0749e+00,  2.2618e+00,  8.2658e-02,  3.1331e+00,  6.0706e-03,
          4.5357e+00, -8.7022e-01,  1.1336e+00, -5.9143e+00, -3.3319e-02,
          1.8048e+00,  4.7143e+00,  5.9190e+00,  1.7524e+00,  5.2120e+00,
          1.5569e+00,  3.0329e+00, -2.5079e+00,  4.3327e+00,  4.7906e+00],
        [ 3.0749e+00,  2.2618e+00,  8.2658e-02,  3.1331e+00,  6.0706e-03,
          4.5357e+00, -8.7022e-01,  1.1336e+00, -5.9143e+00, -3.3319e-02,
          1.8048e+00,  4.7143e+00,  5.9190e+00,  1.7524e+00,  5.2120e+00,
          1.5569e+00,  3.0329e+00, -2.5079e+00,  4.3327e+00,  4.7906e+00],
        [ 3.0749e+00,  2.2618e+00,  8.2658e-02,  3.1331e+00,  6.0706e-03,
          4.5357e+00, -8.7022e-01,  1.1336e+00, -5.9143e+00, -3.3319e-02,
          1.8048e+00,  4.7143e+00,  5.9190e+00,  1.7524e+00,  5.2120e+00,
          1.5569e+00,  3.0329e+00, -2.5079e+00,  4.3327e+00,  4.7906e+00],
        [ 3.0749e+00,  2.2618e+00,  8.2658e-02,  3.1331e+00,  6.0706e-03,
          4.5357e+00, -8.7022e-01,  1.1336e+00, -5.9143e+00, -3.3319e-02,
          1.8048e+00,  4.7143e+00,  5.9190e+00,  1.7524e+00,  5.2120e+00,
          1.5569e+00,  3.0329e+00, -2.5079e+00,  4.3327e+00,  4.7906e+00]],
       dtype=torch.float64, grad_fn=<MaxBackward0>)

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?