0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

開志専門職大学情報学部Advent Calendar 2023

Day 22

ちょこっとコーディング:幾何図形や曲線を描く

Last updated at Posted at 2023-12-21

はじめに

 突然ですが,数式や幾何にミステリアスな魅力を感じることはありませんか?
 かっこいい幾何図形,きれいな曲線を描画したいとき,Web情報12やPython Matplotlibが頼りです.スキマ時間の「ちょこっとコーディング」,気楽なちょこっとプログラミングとしても手頃なお題です.図形や空間認識能力を心地よく刺激する効果も期待できます.コードが描くきれいな図形,それを作り出す数式の意味に自然に興味が出たら,とても良い感じです.某情報学部の各フロアにちりばめられた「あの曲線」も含まれます.

いろいろな曲線

 図形の名前でどんな形状か,ビジュアルが頭の中に浮かんできますか?

  • Lemniscate
  • Heart Curve
  • Cardioid
  • Lissajous Curve
  • Suddle Curve
  • Rose Curve
  • Golden Spiral
  • Penrose Triangle
  • Strange Attractor (Lorenz)

動作環境

  • MacOS sonoma 14.1.2
  • Python3.11.6
  • pip 23.3.2
  • VSCode 1.85.1
  • JupyterLab 3.4.5
  • numpy 1.24.4
  • japanize-matplotlib 1.1.3
  • matplotlib 3.5.3
  • matplotlib-inline 0.1.6
  • plotly 5.13.0

必要に応じて,上記のライブラリをpipでインストールしておきましょう:

    $ python3 -m pip install update pip
    $ python3 -m pip install --upgrade pip
    $ python3 -m pip install numpy matplotlib plotly  

図形とコード

 以下,図形の視覚化例と,そのコード例を示します:

Lemniscate

Fig-Lemniscate.png

import numpy as np
import matplotlib.pyplot as plt

theta = np.linspace(0, 2 * np.pi, 1000)

def lemniscate(a,theta):
    x = a * np.sqrt(2)*np.cos(theta)/(1 + np.sin(theta)**2)
    y = x * np.sin(theta)
    return x , y

x,y = lemniscate(2,theta)

plt.plot(x, y,linewidth=12,color='gold')
plt.axis('equal')
plt.title('Lemniscate Curve')
plt.show()

Heart Curve

FIg-Heart.png

import numpy as np
import matplotlib.pyplot as plt

t = np.linspace(0, 2 * np.pi, 100)
x = 16 * np.sin(t) ** 3
y = 13 * np.cos(t) - 5 * np.cos(2 * t) - 2 * np.cos(3 * t) - np.cos(4 * t)

plt.plot(x, y, linewidth=16, color='gold')
plt.axis('equal')
plt.title('Heart Curve')
plt.show()

Cardioid

FIg-Cardioid.png

import numpy as np
import matplotlib.pyplot as plt

theta = np.linspace(0,2*np.pi,300)
r =  3 + 5 * np.cos(theta)

plt.polar(theta, r, 'gold',linewidth=10)
plt.show()

Lissajous

FIg-Lissajous.png

import numpy as np
import matplotlib.pyplot as plt

t = np.linspace(0, 2*np.pi, 300)
x = np.sin(t + np.pi/4)
y = np.cos(2*t)

theta = 12
theta = np.deg2rad(theta) 
R = np.array([[np.cos(theta), -np.sin(theta)], 
              [np.sin(theta), np.cos(theta)]])
x_kp, y_kp = np.dot(R, [x, y])

plt.figure(figsize=(4,4))
plt.plot(x_kp, y_kp, 'orange', linewidth=16)
plt.axis('equal')
plt.show()

Fig-Kaishi.png

import numpy as np
import matplotlib.pyplot as plt

t = np.linspace(0, 2*np.pi, 600)
x = np.cos(2*t + np.pi/2)
y = np.sin(3*t)

theta = 0
theta = np.deg2rad(theta) 
R = np.array([[np.cos(theta), -np.sin(theta)], 
              [np.sin(theta), np.cos(theta)]])
x_kp, y_kp = np.dot(R, [x, y])

plt.figure(figsize=(4,4))
plt.plot(x_kp, y_kp, 'orange', linewidth=8)
plt.axis('equal')
plt.show()

Suddle Point

FIg-Suddle.png

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

X = np.linspace(-5, 5, 50)
Y = np.linspace(-5, 5, 50)
X, Y = np.meshgrid(X, Y)
Z = X**2 - Y**2

fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.plot_surface(X, Y, Z, color='gold', cmap='copper')

plt.show()

Suddle Point (plotly)

  • Plotlyにより,対話的に視点を変えたり,拡大縮小回転しながら眺めることができます.(JupyterLab, Colaboratory経由でブラウザ表示)

FIg-Suddle-plotly.png

import numpy as np
import plotly.graph_objects as go

def f(x,y):
    return x**2 - y**2

x = np.linspace(-5, 5, 50) 
y = np.linspace(-5, 5, 50) 
X, Y = np.meshgrid(x, y) 

Z = f(X, Y) 

fig = go.Figure(data=[go.Surface(x=X, y=Y, z=Z)])
fig.update_layout(title='Saddle Point for x^2 - y^2') 
fig.show()

Rose Curve

FIg-Rose.png

import numpy as np
import matplotlib.pyplot as plt

theta = np.linspace(0, 2*np.pi, 1000)

N = 5
r = 7 * np.cos(N * theta)

plt.polar(theta, r, 'gold',linewidth=7)
plt.show()

Golden Spiral

FIg-Spiral.png

import matplotlib.pyplot as plt
import numpy as np

def polar_to_cartesian(r, theta):
    x = r * np.cos(theta)
    y = r * np.sin(theta)
    return x, y

theta_min = 0
theta_max = 6 * np.pi
theta_step = 0.02
theta = np.arange(theta_min, theta_max, theta_step)

phi = (1 + np.sqrt(5)) / 2  # golden ratio
r = phi ** (theta / np.pi)

x, y = polar_to_cartesian(r, theta)

plt.figure(figsize=(5,5))
plt.plot(x,y,'gold',linewidth=7)
plt.axis('equal')
plt.show()

Penrose Triangle(Penrose三角形3

FIg-Penrose.png

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

import math
# 重心(中心)に対して,一定角度で回転した座標
def rotate_th_degrees(th,X,Y):
    N = len(X)
    def center(x,y):
        xs,ys = sum(x),sum(y)
        return xs/N, ys/N
    rth = math.radians(th)
    
    Rx,Ry = [],[]
    G = center(X,Y)
    for i in range(N):
        x = X[i] - G[0]
        y = Y[i] - G[1]
        xt = x * math.cos(rth) - y * math.sin(rth)
        yt = x * math.sin(rth) + y * math.cos(rth)
        Rx += [xt + G[0]]
        Ry += [yt + G[1]]
    return Rx,Ry
    
# Penroseの不可能三角形
def penrose():
    k = math.sqrt(3)/2
    S = 2.0
    L = S/8
    H = L * k
    x0 = S/2
    y0 = k*x0
    def p(x,y):
        return list( [ L*x-x0, H*y-y0 ] )
    p1 = p(1.0,0.0)
    p2 = p(7.0,0.0)
    p3 = p(7.5,1.0)
    p4 = p(4.5,7.0)
    p5 = p(3.5,7.0)
    p6 = p(0.5,1.0)
    p7 = p(4.5,5.0)
    p8 = p(3.0,2.0)
    p9 = p(2.0,2.0)
    p10 = p(5.0,2.0)
    p11 = p(5.5,1.0)
    p12 = p(4.0,4.0)
    plist = [p1,p2,p3,p4,p5,p6,p1,p2,p7,p8,p9,p4,p9,p10,p12,p11,p6] 
    return [ p[0] for p in plist ],[ p[1] for p in plist ]

x,y = penrose()
px,py = rotate_th_degrees(180,x,y)

fig = plt.figure()
fig, ax = plt.subplots()
ax.plot(x,y,linewidth=4)
ax.plot(px,py,linewidth=4)
ax.set_aspect('equal')
plt.show()
  • Penrose三角形を,重心に対して45度ずつ,回転表示
    FIg-R-Penrose.png
fig = plt.figure()
fig, ax = plt.subplots()

x,y = penrose()
ax.plot(x,y,linewidth=2)
ax.set_aspect('equal')    

for th in range(45,360,45):
    x,y = rotate_th_degrees(th,x,y)
    ax.plot(x,y,linewidth=2)

plt.show()

Strange Attractor (Lorenz)4

FIg-Lorenz.png

import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import colors

def lorenz(x, y, z, s=8, r=22, b=8/3):
    xd = s*(y - x)
    yd = r*x - y - x*z
    zd = x*y - b*z
    return xd, yd, zd

steps,dt = 18000,0.005
xs = np.empty(steps+1)
ys = np.empty(steps+1)
zs = np.empty(steps+1)
xs[0], ys[0], zs[0] = 1, 1, 1

for i in range(steps):
    xd, yd, zd = lorenz(xs[i], ys[i], zs[i])
    xs[i+1] = xs[i] + xd*dt
    ys[i+1] = ys[i] + yd*dt
    zs[i+1] = zs[i] + zd*dt

ax = plt.figure(figsize=(8,8), dpi=300).add_subplot(projection='3d')
ax.view_init(elev=25, azim=120)
cn = colors.Normalize(ys.min(),ys.max())

for i in range(steps):
    ax.plot(xs[i:i+2], ys[i:i+2], zs[i:i+2], 
            color=plt.cm.viridis(cn(xs[i])), lw=0.3)

ax.set_title('Lorenz "strange" Attractor', size=8)
plt.show()

おわりに

 幾何や数式に興味を抱くきっかけと,スキマ時間にちょこっとコーディングのおすすめ部材として,きれいな曲線,幾何図形を描いてみるのも,ちょっとおしゃれな趣味ではないでしょうか?

参考情報:

  1. いろいろな曲線の確認 (http://izumi-math.jp/S_Yoshida/matome/sc_iroironakyokusen.pdf)

  2. 媒介変数表示された有名な曲線7つ(https://manabitimes.jp/math/898)

  3. Penroseの不可能三角形 (https://ja.wikipedia.org/wiki/ペンローズの三角形)

  4. アトラクタ(https://ja.wikipedia.org/wiki/アトラクター)

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?