0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

Date Every Day: マイニングプロセスにおける品質予測

Posted at

tldr

KggleのQuality Prediction in a Mining ProcessMining Quality Prediction - Data Every Day #039に沿ってやっていきます。

実行環境はGoogle Colaboratorです。

インポート

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import sklearn.preprocessing as sp
from sklearn.model_selection import train_test_split
import sklearn.linear_model as slm

import tensorflow as tf

データのダウンロード

Google Driveをマウントします。

from google.colab import drive
drive.mount('/content/drive')
Mounted at /content/drive

KaggleのAPIクライアントを初期化し、認証します。
認証情報はGoogle Drive内(/content/drive/My Drive/Colab Notebooks/Kaggle)にkaggle.jsonとして置いてあります。

import os
kaggle_path = "/content/drive/My Drive/Colab Notebooks/Kaggle"
os.environ['KAGGLE_CONFIG_DIR'] = kaggle_path

from kaggle.api.kaggle_api_extended import KaggleApi
api = KaggleApi()
api.authenticate() 

Kaggle APIを使ってデータをダウンロードします。

dataset_id = 'edumagalhaes/quality-prediction-in-a-mining-process'
dataset = api.dataset_list_files(dataset_id)
file_name = dataset.files[0].name
file_path = os.path.join(api.get_default_download_dir(), file_name)
file_path
'/content/MiningProcess_Flotation_Plant_Database.csv'
api.dataset_download_file(dataset_id, file_name, force=True, quiet=False)
 10%|▉         | 5.00M/50.9M [00:00<00:00, 50.0MB/s]

Downloading MiningProcess_Flotation_Plant_Database.csv.zip to /content


100%|██████████| 50.9M/50.9M [00:00<00:00, 87.3MB/s]










True

データの読み込み

Pedumagalhaes/quality-prediction-in-a-mining-processadasを使ってダウンロードしてきたCSVファイルを読み込みます。

data = pd.read_csv(file_path+'.zip')
data
date % Iron Feed % Silica Feed Starch Flow Amina Flow Ore Pulp Flow Ore Pulp pH Ore Pulp Density Flotation Column 01 Air Flow Flotation Column 02 Air Flow Flotation Column 03 Air Flow Flotation Column 04 Air Flow Flotation Column 05 Air Flow Flotation Column 06 Air Flow Flotation Column 07 Air Flow Flotation Column 01 Level Flotation Column 02 Level Flotation Column 03 Level Flotation Column 04 Level Flotation Column 05 Level Flotation Column 06 Level Flotation Column 07 Level % Iron Concentrate % Silica Concentrate
0 2017-03-10 01:00:00 55,2 16,98 3019,53 557,434 395,713 10,0664 1,74 249,214 253,235 250,576 295,096 306,4 250,225 250,884 457,396 432,962 424,954 443,558 502,255 446,37 523,344 66,91 1,31
1 2017-03-10 01:00:00 55,2 16,98 3024,41 563,965 397,383 10,0672 1,74 249,719 250,532 250,862 295,096 306,4 250,137 248,994 451,891 429,56 432,939 448,086 496,363 445,922 498,075 66,91 1,31
2 2017-03-10 01:00:00 55,2 16,98 3043,46 568,054 399,668 10,068 1,74 249,741 247,874 250,313 295,096 306,4 251,345 248,071 451,24 468,927 434,61 449,688 484,411 447,826 458,567 66,91 1,31
3 2017-03-10 01:00:00 55,2 16,98 3047,36 568,665 397,939 10,0689 1,74 249,917 254,487 250,049 295,096 306,4 250,422 251,147 452,441 458,165 442,865 446,21 471,411 437,69 427,669 66,91 1,31
4 2017-03-10 01:00:00 55,2 16,98 3033,69 558,167 400,254 10,0697 1,74 250,203 252,136 249,895 295,096 306,4 249,983 248,928 452,441 452,9 450,523 453,67 462,598 443,682 425,679 66,91 1,31
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
737448 2017-09-09 23:00:00 49,75 23,2 2710,94 441,052 386,57 9,62129 1,65365 302,344 298,786 299,163 299,92 299,623 346,794 313,695 392,16 430,702 872,008 418,725 497,548 446,357 416,892 64,27 1,71
737449 2017-09-09 23:00:00 49,75 23,2 2692,01 473,436 384,939 9,62063 1,65352 303,013 301,879 299,487 299,71 300,465 330,023 236,7 401,505 404,616 864,409 418,377 506,398 372,995 426,337 64,27 1,71
737450 2017-09-09 23:00:00 49,75 23,2 2692,2 500,488 383,496 9,61874 1,65338 303,662 307,397 299,487 299,927 299,707 329,59 225,879 408,899 399,316 867,598 419,531 503,414 336,035 433,13 64,27 1,71
737451 2017-09-09 23:00:00 49,75 23,2 1164,12 491,548 384,976 9,61686 1,65324 302,55 301,959 298,045 299,372 298,819 351,453 308,115 405,107 466,832 876,591 407,299 502,301 340,844 433,966 64,27 1,71
737452 2017-09-09 23:00:00 49,75 23,2 1164,12 468,019 384,801 9,61497 1,6531 300,355 292,865 298,625 298,717 297,395 362,464 308,115 413,754 514,143 881,323 378,969 500,1 374,354 441,182 64,27 1,71

737453 rows × 24 columns

下準備

for column in data.columns:
    data[column] = data[column].apply(lambda x: x.replace(',', '.'))
import re
data['date'] = data['date'].apply(lambda x: re.search('[0-9]*-[0-9]*', x).group(0))
data['Year'] = data['date'].apply(lambda x: re.search('^[^-]*', x).group(0))
data['Month'] = data['date'].apply(lambda x: re.search('[^-]*$', x).group(0))

data = data.drop('date', axis=1)
data
% Iron Feed % Silica Feed Starch Flow Amina Flow Ore Pulp Flow Ore Pulp pH Ore Pulp Density Flotation Column 01 Air Flow Flotation Column 02 Air Flow Flotation Column 03 Air Flow Flotation Column 04 Air Flow Flotation Column 05 Air Flow Flotation Column 06 Air Flow Flotation Column 07 Air Flow Flotation Column 01 Level Flotation Column 02 Level Flotation Column 03 Level Flotation Column 04 Level Flotation Column 05 Level Flotation Column 06 Level Flotation Column 07 Level % Iron Concentrate % Silica Concentrate Year Month
0 55.2 16.98 3019.53 557.434 395.713 10.0664 1.74 249.214 253.235 250.576 295.096 306.4 250.225 250.884 457.396 432.962 424.954 443.558 502.255 446.37 523.344 66.91 1.31 2017 03
1 55.2 16.98 3024.41 563.965 397.383 10.0672 1.74 249.719 250.532 250.862 295.096 306.4 250.137 248.994 451.891 429.56 432.939 448.086 496.363 445.922 498.075 66.91 1.31 2017 03
2 55.2 16.98 3043.46 568.054 399.668 10.068 1.74 249.741 247.874 250.313 295.096 306.4 251.345 248.071 451.24 468.927 434.61 449.688 484.411 447.826 458.567 66.91 1.31 2017 03
3 55.2 16.98 3047.36 568.665 397.939 10.0689 1.74 249.917 254.487 250.049 295.096 306.4 250.422 251.147 452.441 458.165 442.865 446.21 471.411 437.69 427.669 66.91 1.31 2017 03
4 55.2 16.98 3033.69 558.167 400.254 10.0697 1.74 250.203 252.136 249.895 295.096 306.4 249.983 248.928 452.441 452.9 450.523 453.67 462.598 443.682 425.679 66.91 1.31 2017 03
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
737448 49.75 23.2 2710.94 441.052 386.57 9.62129 1.65365 302.344 298.786 299.163 299.92 299.623 346.794 313.695 392.16 430.702 872.008 418.725 497.548 446.357 416.892 64.27 1.71 2017 09
737449 49.75 23.2 2692.01 473.436 384.939 9.62063 1.65352 303.013 301.879 299.487 299.71 300.465 330.023 236.7 401.505 404.616 864.409 418.377 506.398 372.995 426.337 64.27 1.71 2017 09
737450 49.75 23.2 2692.2 500.488 383.496 9.61874 1.65338 303.662 307.397 299.487 299.927 299.707 329.59 225.879 408.899 399.316 867.598 419.531 503.414 336.035 433.13 64.27 1.71 2017 09
737451 49.75 23.2 1164.12 491.548 384.976 9.61686 1.65324 302.55 301.959 298.045 299.372 298.819 351.453 308.115 405.107 466.832 876.591 407.299 502.301 340.844 433.966 64.27 1.71 2017 09
737452 49.75 23.2 1164.12 468.019 384.801 9.61497 1.6531 300.355 292.865 298.625 298.717 297.395 362.464 308.115 413.754 514.143 881.323 378.969 500.1 374.354 441.182 64.27 1.71 2017 09

737453 rows × 25 columns

data['Year'].unique()
array(['2017'], dtype=object)
data = data.drop('Year', axis=1)

データの分割

target = '% Silica Concentrate'

y = data[target]
X_n = data.drop([target, '% Iron Concentrate'], axis=1)
X_i = data.drop([target], axis=1)

スケーリング

scaler = sp.StandardScaler()
X_n = scaler.fit_transform(X_n)
X_i = scaler.fit_transform(X_i)
X_n_train, X_n_test, y_n_train, y_n_test = train_test_split(X_n, y, train_size=0.7)
X_i_train, X_i_test, y_i_train, y_i_test = train_test_split(X_i, y, train_size=0.7)

トレーニング

model_n = slm.LinearRegression()
model_i = slm.LinearRegression()
model_n.fit(X_n_train, y_n_train)
print('Model without iron R^2 Score:', model_n.score(X_n_test, y_n_test))
Model without iron R^2 Score: 0.15409635166200997
model_i.fit(X_i_train, y_i_train)
print('Model with iron R^2 Score:', model_i.score(X_i_test, y_i_test))
Model with iron R^2 Score: 0.6875874592764709
0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?