1
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

KenmaroAdvent Calendar 2022

Day 13

2022年時点リアルタイムセマンティックセグメンテーションのまとめ(データセット編)

Last updated at Posted at 2022-12-12

概要

セマンティックセグメンテーションは、
機械学習を使って画像や動画に対して見えている物体をピクセル単位で判別し、色を塗り分けるタスクですが、
昨今はいろいろなモデルが登場し、自動運転などのアプリケーションを対象とした、
リアルタイム性のあるものも登場しています。

今回は、そのようなセマンティックセグメンテーションモデルのまとめをやってみようと思います。

よく使われるオープンデータセット

まずは、SoTAなどを叩き出しているモデルたちが使っている、オープンデータセットの紹介を行います。
これらのオープンデータセットを用いてモデルの精度と速度を比較し、それらが改善したというような論文が数多く出ています。
いろいろなデータセットがあるので、一度チェックしてみると面白いと思います。

Pascal Context

400 以上のクラスを持ったデータセットで、3つのカテゴリを持っています。
さまざまなシチュエーションでのセグメンテーションに使用されます。
400以上のクラスはあるものの、データセットはスパースであり、頻出の59クラスに対して学習データとして用いられることが多いようです。

Screen Shot 2022-11-29 at 11.59.51.png

リンクはこちら。

City Scapes

セマンティックセグメンテーションを行ったことがある人は必ずみたことがあるデータセットです。
自動運転のセグメンテーションに使用されます。
30クラスの塗り分けがされており、5000枚の画像が緻密にアノテーションされたもの、20000の画像は荒くアノテーションされている、とあります。

Screen Shot 2022-11-29 at 12.00.23.png

リンクはこちら。

CamVid

これもよく出てくるデータセットです。自動運転のセグメンテーションに使用されます。
約700フレームの画像と、32のクラスが含まれたデータセットです。

Screen Shot 2022-11-29 at 12.02.32.png

リンクはこちら。

COCO-Stuff

巨大なデータセットであり、16.4 万画像を持ち、172のカテゴリに別れた80個、91個の大小の物体を含んでいます。

Screen Shot 2022-11-29 at 12.03.22.png

リンクはこちら。

Foggy CityScapes

先ほどのCityScapeデータセットの、霧がかかっているバージョンです。
このデータセットは、CityScapeデータセットに対して人工的に霧(もや)を重ねたものです。
みてみると、非常に自然に霧がかかっているように見えます。
データ自体はCityScapeを受け継いでいるので、CityScapeで結果の出たモデルに対して、
天候がどう影響するのか、ということをテストするのに最適なデータセットです。

Screen Shot 2022-11-29 at 12.04.47.png

リンクはこちら。

ADE20k

風景のセグメンテーションデータセットです。名前にもある通り、2万枚の画像を含んでおり、
細かいアノテーションがされた大きなデータセットとなっています。
空、道路、芝生、人、車、ベッドなど、さまざまなオブジェクトがアノテーションされています。

Screen Shot 2022-11-29 at 12.07.31.png

リンクはこちら。

まとめ

今回は、セマンティックセグメンテーションの多アスクで頻出のデータセットについて
今一度紹介しました。次は実際のSoTAを叩き出しているアルゴリズムについてまとめていきたいと考えています。

今回はこの辺で。

@kenmaro

1
3
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?