0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

数学_Q05

Last updated at Posted at 2023-01-09

考察

対数をとって後は計算力。
3分でやりきれるか、ギリギリラインか。

コードで解決

# 変数定義
x, y = symbols('x y',real=True)

# 連立方程式定義
eq1 = Eq((2/x)**log(2, E), (3/y)**log(3, E))
eq2 = Eq(3**(-log(x, E)), 2**(-log(y, E)))
display(eq1, eq2)
solve([eq1, eq2], [x, y])

解けない。。。?
Screenshot from 2023-01-07 19-47-31.png

再び考察

どうやらそのまま投入すると解けないのか。。。
であれば計算の過程で対数を取るので結果状態から解いてみる。

両辺対数とって分解まで実施。
$\log{2}(\log{2}-\log{x}) = \log{3}(\log{3}-\log{y})$
$-\log{x}\log{3} = -\log{y}\log{2}$

この状態にしてコードで解いてみます

コードで解決:リトライ

eq3 = Eq(log(2, E)*((log(2, E) - log(x, E))), (log(3, E)*((log(3,E) - log(y, E)))))
eq4 = Eq(-log(x, E)*log(3, E), (-log(y, E)*log(2, E)))
display(eq3, eq4)
solve([eq3, eq4], [x, y])

よさげ
Screenshot from 2023-01-07 19-56-03.png

ひと手間かける必要あり、、、と。

なお課題は
$ x^2 + y^2$ の算出なので
$4 + 9 = 13$


$ \frac{2}{x}^{\log{2}} =\frac{3}{y}^{\log{3}} $

$ 3^{-\log{x}} = 2^{-\log{y}} $


ChatGPTにきいてみる。

Screenshot from 2023-01-18 16-54-15.png

0
0
1

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?