2
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

ChainerでCNNの実装例

Last updated at Posted at 2018-09-12

必要最低限の使い方を覚書き。

AlexNet

画像認識コンテスト(ILSVRC)で2012年に優勝したCNN。
ImageNet Classification with Deep Convolutional Neural Networks

import chainer
from chainer import Chain
from chainer import links as L
from chainer import functions as F

class AlexNet(Chain):
    def __init__(self, num_class, train=True):
        super(AlexNet, self).__init__()
        with self.init_scope():
            self.conv1=L.Convolution2D(None, 96, 11, stride=4)
            self.conv2=L.Convolution2D(None, 256, 5, pad=2)
            self.conv3=L.Convolution2D(None, 384, 3, pad=1)
            self.conv4=L.Convolution2D(None, 384, 3, pad=1)
            self.conv5=L.Convolution2D(None, 256, 3, pad=1)
            self.fc6=L.Linear(None, 4096)
            self.fc7=L.Linear(None, 4096)
            self.fc8=L.Linear(None, num_class)

    def __call__(self, x):
        h = F.max_pooling_2d(F.local_response_normalization(
            F.relu(self.conv1(x))), 3, stride=2)
        h = F.max_pooling_2d(F.local_response_normalization(
            F.relu(self.conv2(h))), 3, stride=2)
        h = F.relu(self.conv3(h))
        h = F.relu(self.conv4(h))
        h = F.max_pooling_2d(F.relu(self.conv5(h)), 3, stride=2)
        h = F.dropout(F.relu(self.fc6(h)))
        h = F.dropout(F.relu(self.fc7(h)))
        h = self.fc8(h)

        return h

LeNet-5

Yann LeCunらによって考案されたCNN。
Gradient-Based Learning Applied to Document Recognition

import chainer
from chainer import Chain
from chainer import links as L
from chainer import functions as F

class LeNet(Chain):
    def __init__(self, num_class, train=True):
        super(LeNet, self).__init__()
        with self.init_scope():
            self.conv1=L.Convolution2D(None, 6, 5, stride=1)
            self.conv2=L.Convolution2D(None, 16, 5, stride=1)
            self.conv3=L.Convolution2D(None, 120, 4, stride=1)
            self.fc4=L.Linear(None, 84)
            self.fc5=L.Linear(None, num_class)

    def __call__(self, x):
        h = F.max_pooling_2d(F.local_response_normalization(
            F.sigmoid(self.conv1(x))), 2, stride=2)
        h = F.max_pooling_2d(F.local_response_normalization(
            F.sigmoid(self.conv2(h))), 2, stride=2)
        h = F.sigmoid(self.fc3(h))
        h = F.sigmoid(self.fc4(h))
        h = self.fc5(h)

        return h

今後も追加予定

作ったモデルを可能な限り追加掲載していく。修正も適宜。

2
3
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?