0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

Cox比例ハザードモデル lifelinesとsksurvの書き方の違い

Last updated at Posted at 2023-03-09

データについて

今回使用するデータはlifelines.datasetload_rossiです。
したがってsksurvのCox回帰の際に目的変数の形を変換しなければいけません。忘れそうなのでメモっときます。

lifelines

#data load
from lifelines.datasets import load_rossi
rossi = load_rossi()

from lifelines import CoxPHFitter
cph = CoxPHFitter()
cph.fit(rossi, duration_col='week', event_col='arrest')
cph.print_summary()
cph.plot()

lifelinesの場合データをすべてひとまとまりのDataFrameでもち、fitの際にdurationのカラムとeventのカラム名を指定するだけでできます。直観的ですね。

sksurv

sksurvの場合は説明変数はDataFrameのままでも大丈夫ですが、目的変数(durationとevent)の形式をnumpyの構造化配列に変形します。

from sksurv.linear_model import CoxPHSurvivalAnalysis
estimator = CoxPHSurvivalAnalysis()
y = rossi[['arrest','week']] #目的変数 
X = rossi.drop(columns=['arrest','week']) #説明変数

#dtypeの指定 ?はbool型 i8はint64
tp = np.dtype([('arrest','?'), ('week', 'i8')])

structured_y = np.zeros(len(y), dtype=tp)
structured_y['arrest'] = y['arrest']
structured_y['week'] = y['week']
estimator.fit(X,structured_y)
0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?