2
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

自分用メモ:scikit-learn、matplotlibで表す線形回帰

Posted at

ライブラリインポート

from sklearn.linear_model import LinearRegression
import numpy as np
import matplotlib.pyplot as plt

:グラフ用データ作成
X、yをランダムで20個づつ生成

X = np.random.rand(20)
y = np.random.rand(20)

Xを昇順、sklearnに渡しやすい形にリシェイプ

X = np.sort(X).reshape(20,1)
X

中身は、こんなん。

>>array([[0.00460232],
       [0.05499239],
       [0.07249879],
       [0.10357735],
       [0.12304941],
       [0.12399111],
       [0.21219358],
       [0.23241532],
       [0.2975664 ],
       [0.3241855 ],
       [0.33018194],
       [0.47777823],
       [0.51792399],
       [0.52408334],
       [0.69196947],
       [0.7926415 ],
       [0.79900541],
       [0.87883547],
       [0.9491404 ],
       [0.98766611]])

yも昇順

y = np.sort(y)
y
>>array([0.0042209 , 0.13057395, 0.16788022, 0.17403799, 0.25919865,
       0.3030241 , 0.35839353, 0.39294163, 0.44227869, 0.46863275,
       0.54436167, 0.55472105, 0.57756643, 0.60124576, 0.66758224,
       0.69719244, 0.73952565, 0.81040396, 0.86517258, 0.95263727])

グラフ化

plt.scatter(X,y)

ダウンロード (1).png

LinearRegression()でfit、表示。

model = LinearRegression()
model.fit(X,y)
plt.plot(X, model.predict(X))
plt.scatter(X,y)

ダウンロード.png

こんな感じで表示できる。

2
3
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?