0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

QuantXでNaNをカウント

Last updated at Posted at 2019-04-30

#通常のデバッグ
たまに小型株とか買うと

スクリーンショット 2019-04-30 13.53.53.png

このように銘柄のデータがないよと怒られます。

よくあるデバッグの方法として
https://qiita.com/investor-gon/items/64acc909257fa3448e27

ctx.loggger.debug(cp)

と株価の終値をdebugするのが一般的ですが、、

#問題が

QuantXのcpですがこのようにDataFrameの形でdebugされます。
しかし、銘柄が多かったり期間が長かったりするとログが省略されます。

jp.stock.2914  jp.stock.3092      ...        jp.stock.5302  \
date                                          ...                        
2014-01-06         3425.0     848.666687      ...               2000.0   
2014-01-07         3375.0     816.666687      ...               2010.0   
2014-01-08         3290.0     814.000000      ...               2030.0   
2014-01-09         3180.0     833.666687      ...               2010.0   
2014-01-10         3195.0     844.000000      ...               2000.0   
2014-01-14         3172.0     813.666687      ...               1970.0   
2014-01-15         3221.0     833.333313      ...               2010.0   
2014-01-16         3220.0     822.333313      ...               2020.0   
2014-01-17         3186.0     845.666687      ...               2090.0   
2014-01-20         3200.0     813.666687      ...               2110.0   
2014-01-21         3231.0     827.666687      ...               2080.0   
2014-01-22         3235.0     831.333313      ...               2060.0   
2014-01-23         3227.0     840.000000      ...               2020.0   
2014-01-24         3173.0     796.000000      ...               1990.0   
2014-01-27         3128.0     756.666687      ...               1910.0   
2014-01-28         3068.0     763.333313      ...               1900.0   
2014-01-29         3129.0     787.000000      ...               1950.0   
2014-01-30         3026.0     752.333313      ...               1900.0   
2014-01-31         3197.0     763.333313      ...               1890.0   
2014-02-03         3135.0     764.333313      ...               1820.0   
2014-02-04         3070.0     730.000000      ...               1700.0   
2014-02-05         3138.0     749.666687      ...               1730.0   
2014-02-06         3107.0     719.000000      ...               1760.0   
2014-02-07         3186.0     731.000000      ...               1820.0   
2014-02-10         3285.0     773.000000      ...               1810.0   
2014-02-12         3347.0     750.000000      ...               1920.0   
2014-02-13         3319.0     726.333313      ...               1890.0   
2014-02-14         3280.0     701.666687      ...               1840.0   
2014-02-17         3291.0     717.666687      ...               1850.0   
2014-02-18         3357.0     736.333313      ...               1910.0   
...                   ...            ...      ...                  ...   
2017-02-17         3768.0    2452.000000      ...               2980.0   
2017-02-20         3774.0    2487.000000      ...               2990.0   
2017-02-21         3778.0    2487.000000      ...               2980.0   
2017-02-22         3798.0    2456.000000      ...               3000.0   
2017-02-23         3811.0    2384.000000      ...               2960.0   
2017-02-24         3805.0    2367.000000      ...               2910.0   
2017-02-27         3778.0    2346.000000      ...               2900.0   
2017-02-28         3757.0    2348.000000      ...               2890.0   
2017-03-01         3800.0    2418.000000      ...               2910.0   
2017-03-02         3776.0    2421.000000      ...               2930.0   
2017-03-03         3781.0    2409.000000      ...               2920.0   
2017-03-06         3782.0    2402.000000      ...               2970.0   
2017-03-07         3780.0    2378.000000      ...               2970.0   
2017-03-08         3766.0    2361.000000      ...               2960.0   
2017-03-09         3755.0    2361.000000      ...               3000.0   
2017-03-10         3804.0    2406.000000      ...               3000.0   
2017-03-13         3845.0    2407.000000      ...               3000.0   
2017-03-14         3840.0    2435.000000      ...               2990.0   
2017-03-15         3831.0    2436.000000      ...               2940.0   
2017-03-16         3783.0    2385.000000      ...               3200.0   
2017-03-17         3772.0    2373.000000      ...               3220.0   
2017-03-21         3856.0    2330.000000      ...               3170.0   
2017-03-22         3752.0    2293.000000      ...               3070.0   
2017-03-23         3753.0    2284.000000      ...               3080.0   
2017-03-24         3786.0    2302.000000      ...               3220.0   
2017-03-27         3725.0    2321.000000      ...               3180.0   
2017-03-28         3726.0    2382.000000      ...               3200.0   
2017-03-29         3701.0    2422.000000      ...               3360.0   
2017-03-30         3654.0    2441.000000      ...               3310.0   
2017-03-31         3618.0    2463.000000      ...               3340.0   

そもそも長い

#解決法
NaNをカウントすればいいのでは?

NaN_count = cp.isnull().sum()
ctx.logger.debug(NaN_count)

#結果

jp.stock.2121      0
jp.stock.2124      0
jp.stock.2337      0
jp.stock.2352      0
jp.stock.2371      0
jp.stock.2379      0
jp.stock.2391      0
jp.stock.2477      0
jp.stock.2914      0
jp.stock.3092      0
jp.stock.3543    608
jp.stock.3647      0
jp.stock.3665      0
jp.stock.3679      0
jp.stock.3712      0
jp.stock.3723      0
jp.stock.3750      0
jp.stock.3763      0
jp.stock.3772      0
jp.stock.3835      0
jp.stock.3848      0
jp.stock.3901    234
jp.stock.3922    548
jp.stock.3963    670
jp.stock.3969    727
jp.stock.3979    783
jp.stock.3997    794
jp.stock.4327      0
jp.stock.4368      0
jp.stock.4369      0
jp.stock.4507      0
jp.stock.4521      0
jp.stock.4704      0
jp.stock.4732      0
jp.stock.4792      0
jp.stock.4820      0
jp.stock.4849      0
jp.stock.4975      0
jp.stock.5194      0
jp.stock.5301      0
jp.stock.5302      0
jp.stock.6048    324
jp.stock.6080      0
jp.stock.6146      0
jp.stock.6157      0
jp.stock.6161      0
jp.stock.6196    603
jp.stock.6538    721
jp.stock.6539    722
jp.stock.6552    794

このようにNaNがあるものは数字が帰ってきます。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?